Suppr超能文献

减少供水系统中污染范围不确定性的最佳采样位置。

Optimal sampling locations to reduce uncertainty in contamination extent in water distribution systems.

作者信息

Rodriguez J S, Bynum M, Laird C, Hart D B, Klise K A, Burkhardt J, Haxton T

机构信息

Ph.D. Candidate, Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907.

SMTS, R&D S&E, Computer Science, Sandia National Laboratories, Eubank Blvd SE, Albuquerque, NM, 87123.

出版信息

J Infrastruct Syst. 2021 Jun 28;27(3). doi: 10.1061/(asce)is.1943-555x.0000628.

Abstract

Drinking water utilities rely on samples collected from the distribution system to provide assurance of water quality. If a water contamination incident is suspected, samples can be used to determine the source and extent of contamination. By determining the extent of contamination, the percentage of the population exposed to contamination, or areas of the system unaffected can be identified. Using water distribution system models for this purpose poses a challenge because significant uncertainty exists in the contamination scenarios (e.g., injection location, amount, duration, customer demands, contaminant characteristics). This article outlines an optimization framework to identify strategic sampling locations in water distribution systems. The framework seeks to identify the best sampling locations to quickly determine the extent of the contamination while considering uncertainty with respect to the contamination scenarios. The optimization formulations presented here solve for multiple optimal sampling locations simultaneously and efficiently, even for large systems with a large uncertainty space. These features are demonstrated in two case studies.

摘要

饮用水公用事业依赖于从配水系统采集的样本,以确保水质。如果怀疑发生水污染事件,样本可用于确定污染的来源和程度。通过确定污染程度,可以识别受污染的人口百分比或系统中未受影响的区域。为此使用配水系统模型面临挑战,因为污染情景中存在很大的不确定性(例如,注入位置、数量、持续时间、客户需求、污染物特性)。本文概述了一个优化框架,以确定配水系统中的战略采样位置。该框架旨在确定最佳采样位置,以便在考虑污染情景不确定性的同时快速确定污染程度。这里提出的优化公式能够同时有效地求解多个最优采样位置,即使对于具有很大不确定性空间的大型系统也是如此。在两个案例研究中展示了这些特点。

相似文献

7
Heuristic Space Reduction Method for Source Localization in Water Distribution Networks.用于配水管网源定位的启发式空间缩减方法
ACS ES T Water. 2025 Feb 25;5(3):1099-1111. doi: 10.1021/acsestwater.4c00671. eCollection 2025 Mar 14.
9
Quantitative estimation of sampling uncertainties for mycotoxins in cereal shipments.谷物运输中真菌毒素抽样不确定性的定量估计。
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2012;29(7):1141-56. doi: 10.1080/19440049.2012.675594. Epub 2012 Apr 24.

引用本文的文献

1
Heuristic Space Reduction Method for Source Localization in Water Distribution Networks.用于配水管网源定位的启发式空间缩减方法
ACS ES T Water. 2025 Feb 25;5(3):1099-1111. doi: 10.1021/acsestwater.4c00671. eCollection 2025 Mar 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验