Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Lyon, France.
Phys Med Biol. 2022 Nov 23;67(23). doi: 10.1088/1361-6560/aca068.
We propose a method to model families of distributions of particles exiting a phantom with a conditional generative adversarial network (condGAN) during Monte Carlo simulation of single photon emission computed tomography imaging devices.The proposed condGAN is trained on a low statistics dataset containing the energy, the time, the position and the direction of exiting particles. In addition, it also contains a vector of conditions composed of four dimensions: the initial energy and the position of emitted particles within the phantom (a total of 12 dimensions). The information related to the gammas absorbed within the phantom is also added in the dataset. At the end of the training process, one component of the condGAN, the generator (), is obtained.Particles with specific energies and positions of emission within the phantom can then be generated withto replace the tracking of particle within the phantom, allowing reduced computation time compared to conventional Monte Carlo simulation.The condGAN generator is trained only once for a given phantom but can generate particles from various activity source distributions.
我们提出了一种方法,即在单光子发射计算机断层成像设备的蒙特卡罗模拟中,使用条件生成对抗网络(condGAN)对从体模中逸出的粒子分布族进行建模。所提出的 condGAN 是在包含能量、时间、位置和方向的低统计数据集上进行训练的。此外,它还包含一个由四个维度组成的条件向量:发射粒子在体模内的初始能量和位置(总共 12 个维度)。数据集还添加了与体模内吸收的伽马相关的信息。在训练过程结束时,获取 condGAN 的一个组件,生成器()。然后可以使用来生成具有特定能量和在体模内发射位置的粒子,与传统的蒙特卡罗模拟相比,这可以减少计算时间。condGAN 生成器仅针对给定的体模进行一次训练,但可以从各种活性源分布生成粒子。