Suppr超能文献

铁钴掺杂碳纳米纤维阳极同时促进微生物燃料电池中的生物电催化和直接电子转移:表征、性能及机制

Iron cobalt-doped carbon nanofibers anode to simultaneously boost bioelectrocatalysis and direct electron transfer in microbial fuel cells: Characterization, performance, and mechanism.

作者信息

Jiang Nan, Song Jialing, Yan Mengying, Hu Yuan, Wang Miaomiao, Liu Yanbiao, Huang Manhong

机构信息

College of Environmental Science and Engineering, Key Laboratory of Pollution Control and Emission Reduction Technology in Textile Industry, Donghua University, Shanghai 201620, China.

College of Environmental Science and Engineering, Key Laboratory of Pollution Control and Emission Reduction Technology in Textile Industry, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.

出版信息

Bioresour Technol. 2023 Jan;367:128230. doi: 10.1016/j.biortech.2022.128230. Epub 2022 Nov 1.

Abstract

A self-supporting electrode (FeCo-MOF/CNFs) combining iron cobalt bimetallic metal-organic frameworks (FeCo-MOFs) with carbon nanofibers (CNFs) was applied as the anode of a microbial fuel cell (MFC). The introduction of FeCo-MOFs enhanced graphitization degree and electrical conductivity, which endowed FeCo-MOF/CNFs with excellent electrocatalytic performance and good biocompatibility. The hierarchical porous structure of FeCo-MOF/CNFs provided abundant attachment sites for electroactive bacteria (EAB) and facilitated rapid electron transfer. The MFC equipped with FeCo-MOF/CNFs anode (FeCo/CNFs-MFC) exhibited considerable power generation output (maximum power density: 5.3 ± 0.2 W/m, coulombic efficiency: 54 ± 4 %). In addition, FeCo/CNFs-MFC achieved a direct electron transfer (DET) catalytic current density of 0.63 A/m. FeCo-MOF/CNFs could simultaneously enhance the bioelectrocatalysis activity and promote the DET process of EAB, which provided an effective way to improve the sluggish extracellular electron transport process of the MFC anode.

摘要

一种将铁钴双金属有机框架(FeCo-MOFs)与碳纳米纤维(CNFs)相结合的自支撑电极(FeCo-MOF/CNFs)被用作微生物燃料电池(MFC)的阳极。FeCo-MOFs的引入提高了石墨化程度和电导率,赋予了FeCo-MOF/CNFs优异的电催化性能和良好的生物相容性。FeCo-MOF/CNFs的分级多孔结构为电活性细菌(EAB)提供了丰富的附着位点,并促进了快速电子转移。配备FeCo-MOF/CNFs阳极的MFC(FeCo/CNFs-MFC)表现出可观的发电输出(最大功率密度:5.3±0.2 W/m,库仑效率:54±4%)。此外,FeCo/CNFs-MFC实现了0.63 A/m的直接电子转移(DET)催化电流密度。FeCo-MOF/CNFs可以同时增强生物电催化活性并促进EAB的DET过程,这为改善MFC阳极缓慢的细胞外电子传输过程提供了一种有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验