Wu Xiaoshuai, Li Xiaofen, Shi Zhuanzhuan, Wang Xiaohai, Wang Zhikai, Li Chang Ming
Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
Materials (Basel). 2023 Mar 21;16(6):2479. doi: 10.3390/ma16062479.
The sluggish electron transfer at the interface of microorganisms and an electrode is a bottleneck of increasing the output power density of microbial fuel cells (MFCs). Mo-doped carbon nanofibers (Mo-CNFs) prepared with electrostatic spinning and high-temperature carbonization are used as an anode in MFCs here. Results clearly indicate that MoC nanoparticles uniformly anchored on carbon nanowire, and Mo-doped anodes could accelerate the electron transfer rate. The Mo-CNF ΙΙ anode delivered a maximal power density of 1287.38 mW m, which was twice that of the unmodified CNFs anode. This fantastic improvement mechanism is attributed to the fact that Mo doped on a unique nanofiber surface could enhance microbial colonization, electrocatalytic activity, and large reaction surface areas, which not only enable direct electron transfer, but also promote flavin-like mediated indirect electron transfer. This work provides new insights into the application of electrospinning technology in MFCs and the preparation of anode materials on a large scale.
微生物与电极界面处缓慢的电子转移是提高微生物燃料电池(MFC)输出功率密度的瓶颈。本文采用静电纺丝和高温碳化制备的钼掺杂碳纳米纤维(Mo-CNFs)作为MFC的阳极。结果清楚地表明,MoC纳米颗粒均匀地锚定在碳纳米线上,且钼掺杂阳极可加速电子转移速率。Mo-CNF ΙΙ阳极的最大功率密度为1287.38 mW m,是未改性CNFs阳极的两倍。这种显著的改善机制归因于以下事实:掺杂在独特纳米纤维表面的钼可增强微生物定植、电催化活性和大反应表面积,这不仅能实现直接电子转移,还能促进类黄素介导的间接电子转移。这项工作为静电纺丝技术在MFC中的应用以及大规模制备阳极材料提供了新的见解。