Liu Xiaoling, Li Lu, Xie Xueqin, Zhuang Duohan, Hu Chunsheng
Technol Health Care. 2023;31(2):579-592. doi: 10.3233/THC-220165.
Lung adenocarcinoma (LUAD) is one of the most common cancers with high morbidity and mortality and remains a crucial factor endangering human health.
This study aimed to elucidate the potential treatment target and prognostic biomarker in patients with LUAD through a comprehensive bioinformatics analysis.
The three public microarray datasets of GSE118370, GSE116959, and GSE43767 were obtained from the GEO data resource. The DEGs were explored between LUAD and non-malignant samples using GEO2R online tool in GEO data resource. GO along with KEGG analysis of DEGs were examined using WebGestalt tool. The STRING web resource was employed to develop the PPI network of DEGs, whereas Cytoscape software was employed to perform module analysis. Finally, the mRNA, protein expression along with survival analysis of hub genes were explored via GEPIA, HPA along with Kaplan-Meier plotter web resource, respectively.
Only 82 upregulated and 105 downregulated DEGs were found among the three datasets. Further, GO analysis illustrated that 187 DEGs were primary enriched in extracellular structure organization, tube development along with cell adhesion. The KEGG enrichments showed that these DEGs were primary linked to leukocyte transendothelial migration, vascular smooth muscle contraction along with ECM-receptor interaction. Among the 187 DEGs, the 10 hub genes (P4HB, SPP1, CP, GOLM1, COL1A1, MMP9, COL10A1, APOA1, COL4A6, and TIMP1) were identified. The mRNA along with protein levels of hub genes in LUAD tissues were further verified by Oncomine, UCSC Xena, GEPIA and HPA databases. Additionally, overall survival curves illustrated that LUAD patients with the higher levels of P4HB, SPP1, COL1A1, and MMP9 were dramatically linked to shorter overall survival.
The current study identified DEGs candidate genes (P4HB, SPP1, COL1A1, and MMP9) and pathways in LUAD using bioinformatics analysis, which could enhance our understanding of pathogenesis along with underlying molecular events in LUAD, and these hub genes and pathways may help provide candidate treatment targets for LUAD.
肺腺癌(LUAD)是最常见的癌症之一,发病率和死亡率都很高,仍然是危害人类健康的关键因素。
本研究旨在通过全面的生物信息学分析,阐明LUAD患者潜在的治疗靶点和预后生物标志物。
从基因表达综合数据库(GEO)数据资源中获取GSE118370、GSE116959和GSE43767这三个公共微阵列数据集。使用GEO数据资源中的GEO2R在线工具,在LUAD和非恶性样本之间探索差异表达基因(DEGs)。使用WebGestalt工具对DEGs进行基因本体(GO)和京都基因与基因组百科全书(KEGG)分析。利用STRING网络资源构建DEGs的蛋白质-蛋白质相互作用(PPI)网络,而使用Cytoscape软件进行模块分析。最后,分别通过基因表达谱交互分析(GEPIA)、人类蛋白质图谱(HPA)以及Kaplan-Meier绘图仪网络资源,探索核心基因的mRNA、蛋白质表达以及生存分析。
在这三个数据集中,仅发现82个上调的DEGs和105个下调的DEGs。此外,GO分析表明,187个DEGs主要富集于细胞外结构组织、管道发育以及细胞黏附。KEGG富集分析表明,这些DEGs主要与白细胞跨内皮迁移、血管平滑肌收缩以及细胞外基质受体相互作用有关。在这187个DEGs中,鉴定出了10个核心基因(P4HB、SPP1、CP、GOLM1、COL1A1、MMP9、COL10A1、APOA1、COL4A6和TIMP1)。Oncomine、加州大学圣克鲁兹分校Xena浏览器、GEPIA和HPA数据库进一步验证了LUAD组织中核心基因的mRNA和蛋白质水平。此外,总生存曲线表明,P4HB、SPP1、COL1A1和MMP9水平较高的LUAD患者的总生存期显著缩短。
本研究通过生物信息学分析,在LUAD中鉴定出DEGs候选基因(P4HB、SPP1、COL1A1和MMP9)和信号通路,这可以增强我们对LUAD发病机制以及潜在分子事件的理解,并且这些核心基因和信号通路可能有助于为LUAD提供候选治疗靶点。