Suppr超能文献

用于卤代烷与芳基硼酸酯之间铃木-宫浦交叉偶联反应的空气稳定型铁基预催化剂。

Air-Stable Iron-Based Precatalysts for Suzuki-Miyaura Cross-Coupling Reactions between Alkyl Halides and Aryl Boronic Esters.

作者信息

Wong Alexander S, Zhang Bufan, Li Bo, Neidig Michael L, Byers Jeffery A

机构信息

Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States.

Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.

出版信息

Org Process Res Dev. 2021 Nov 19;25(11):2461-2472. doi: 10.1021/acs.oprd.1c00235. Epub 2021 Oct 12.

Abstract

The development of an air-stable iron(III)-based precatalyst for the Suzuki-Miyaura cross-coupling reaction of alkyl halides and unactivated aryl boronic esters is reported. Despite benefits to cost and toxicity, the proclivity of iron(II)-based complexes to undergo deactivation oxidation or hydrolysis is a limiting factor for their widespread use in cross-coupling reactions compared to palladium-based or nickel-based complexes. The new octahedral iron(III) complex demonstrates long-term stability on the benchtop as assessed by a combination of H NMR spectroscopy, Mössbauer spectroscopy, and its sustained catalytic activity after exposure to air. The improved stability of the iron-based catalyst facilitates an improved protocol in which Suzuki-Miyaura cross-coupling reactions of valuable substrates can be assembled without the use of a glovebox and access a diverse scope of products similar to reactions assembled in the glovebox with iron(II)-based catalysts.

摘要

报道了一种用于卤代烃与未活化芳基硼酸酯的铃木-宫浦交叉偶联反应的空气稳定型铁(III)基预催化剂的开发。尽管铁(II)基配合物在成本和毒性方面具有优势,但与钯基或镍基配合物相比,其易于发生失活(氧化或水解)的倾向是其在交叉偶联反应中广泛应用的限制因素。通过核磁共振氢谱、穆斯堡尔谱以及其在暴露于空气后的持续催化活性评估,新的八面体铁(III)配合物在台面上表现出长期稳定性。铁基催化剂稳定性的提高促进了一种改进的方法,即无需使用手套箱就可以进行有价值底物的铃木-宫浦交叉偶联反应,并获得与在手套箱中使用铁(II)基催化剂进行的反应类似的多种产物。

相似文献

1
Air-Stable Iron-Based Precatalysts for Suzuki-Miyaura Cross-Coupling Reactions between Alkyl Halides and Aryl Boronic Esters.
Org Process Res Dev. 2021 Nov 19;25(11):2461-2472. doi: 10.1021/acs.oprd.1c00235. Epub 2021 Oct 12.
2
Rational Design of an Iron-Based Catalyst for Suzuki-Miyaura Cross-Couplings Involving Heteroaromatic Boronic Esters and Tertiary Alkyl Electrophiles.
Angew Chem Int Ed Engl. 2020 Mar 23;59(13):5392-5397. doi: 10.1002/anie.201914315. Epub 2020 Feb 25.
3
Iron-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions between Alkyl Halides and Unactivated Arylboronic Esters.
Org Lett. 2018 Sep 7;20(17):5233-5237. doi: 10.1021/acs.orglett.8b02184. Epub 2018 Aug 22.
4
A new thioglycolic ester β-cyclodextrin/PdCl in water: An accessible catalyst for the Suzuki-Miyaura coupling reaction.
Carbohydr Polym. 2023 Feb 1;301(Pt A):120271. doi: 10.1016/j.carbpol.2022.120271. Epub 2022 Oct 28.
5
A Rationally Designed Iron(II) Catalyst for C(sp)-C(sp) and C(sp)-C(sp) Suzuki-Miyaura Cross-Coupling.
Angew Chem Int Ed Engl. 2024 Aug 5;63(32):e202408419. doi: 10.1002/anie.202408419. Epub 2024 Jun 30.
7
Cobalt-Catalyzed C(sp)-C(sp) Suzuki-Miyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands.
ACS Catal. 2022 Feb 4;12(3):1905-1918. doi: 10.1021/acscatal.1c05586. Epub 2022 Jan 20.
8
Bis-diimidazolylidine complexes of nickel: investigations into nickel catalyzed coupling reactions.
Dalton Trans. 2012 Jan 7;41(1):251-60. doi: 10.1039/c1dt10858a. Epub 2011 Oct 24.
10
Fully Aqueous and Air-Compatible Cross-Coupling of Primary Alkyl Halides with Aryl Boronic Species: A Possible and Facile Method.
ACS Catal. 2023 Apr 24;13(9):6365-6374. doi: 10.1021/acscatal.3c00252. eCollection 2023 May 5.

本文引用的文献

1
Iron-catalysed enantioconvergent Suzuki-Miyaura cross-coupling to afford enantioenriched 1,1-diarylalkanes.
Chem Commun (Camb). 2020 Dec 4;56(93):14661-14664. doi: 10.1039/d0cc05003b. Epub 2020 Nov 6.
2
Rational Design of an Iron-Based Catalyst for Suzuki-Miyaura Cross-Couplings Involving Heteroaromatic Boronic Esters and Tertiary Alkyl Electrophiles.
Angew Chem Int Ed Engl. 2020 Mar 23;59(13):5392-5397. doi: 10.1002/anie.201914315. Epub 2020 Feb 25.
3
Roles of Iron Complexes in Catalytic Radical Alkene Cross-Coupling: A Computational and Mechanistic Study.
J Am Chem Soc. 2019 May 8;141(18):7473-7485. doi: 10.1021/jacs.9b02117. Epub 2019 Apr 26.
4
Iron-Catalyzed C(sp)-C(sp) Cross-Coupling of Chlorobenzenesulfonamides with Alkyl Grignard Reagents: Entry to Alkylated Aromatics.
J Org Chem. 2019 Feb 1;84(3):1640-1646. doi: 10.1021/acs.joc.8b02886. Epub 2019 Jan 14.
5
Iron-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions between Alkyl Halides and Unactivated Arylboronic Esters.
Org Lett. 2018 Sep 7;20(17):5233-5237. doi: 10.1021/acs.orglett.8b02184. Epub 2018 Aug 22.
7
Fe-Catalyzed C-C Bond Construction from Olefins via Radicals.
J Am Chem Soc. 2017 Feb 15;139(6):2484-2503. doi: 10.1021/jacs.6b13155. Epub 2017 Feb 2.
8
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion.
ACS Cent Sci. 2016 Nov 23;2(11):778-789. doi: 10.1021/acscentsci.6b00272. Epub 2016 Oct 27.
9
Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone?
J Med Chem. 2016 May 26;59(10):4443-58. doi: 10.1021/acs.jmedchem.5b01409. Epub 2015 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验