Service de Maladies Infectieuses et Tropicales, Hôpital Bichat Claude Bernard, AP-HP, Université Paris Cité, Paris, France.
EA7323, Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Université Paris Cité, Paris, France.
Antimicrob Agents Chemother. 2022 Dec 20;66(12):e0113522. doi: 10.1128/aac.01135-22. Epub 2022 Nov 7.
We aimed to develop a piperacillin population pharmacokinetic (PK) model in critically ill children receiving continuous renal replacement therapy (CRRT) and to optimize dosing regimens. The piperacillin plasma concentration was quantified by high-performance liquid chromatography. Piperacillin PK was investigated using a nonlinear mixed-effect modeling approach. Monte Carlo simulations were performed to compute the optimal scheme of administration according to the target of 100% interdose interval time in which concentration is one to four times above the MIC (100% fT > 1 to 4× MIC). A total of 32 children with a median (interquartile range [IQR]) postnatal age of 2 years (0 to 11), body weight (BW) of 15 kg (6 to 38), and receiving CRRT were included. Concentration-time courses were best described by a one-compartment model with first-order elimination. BW and residual diuresis () explained some between-subject variabilities on volume of distribution (), where [Formula: see text], and clearance (CL), where [Formula: see text], where CL and are 6.78 L/h and 55.0 L, respectively, normalized to a 70-kg subject and median residual diuresis of 0.06 mL/kg/h. Simulations with intermittent and continuous administrations for 4 typical patients with different rates of residual diuresis (0, 0.1, 0.25, and 0.5 mL/kg/h) showed that continuous infusions were appropriate to attain the PK target for patients with residual diuresis higher than 0.1 mL/kg/h according to BW and MIC, while for anuric patients, less frequent intermittent doses were mandatory to avoid accumulation. Optimal exposure to piperacillin in critically ill children on CRRT should be achieved by using continuous infusions with escalating doses for high-MIC bacteria, except for anuric patients who require less frequent intermittent doses.
我们旨在为接受连续肾脏替代治疗 (CRRT) 的危重症儿童开发哌拉西林群体药代动力学 (PK) 模型,并优化给药方案。哌拉西林的血浆浓度通过高效液相色谱法进行定量。采用非线性混合效应模型方法研究哌拉西林 PK。通过蒙特卡罗模拟计算根据 100%目标间隔时间内浓度为 MIC 以上 1 至 4 倍(100% fT > 1 至 4×MIC)的最佳给药方案。共纳入 32 名中位(四分位间距 [IQR])出生后年龄为 2 岁(0 至 11 岁)、体重(BW)为 15 kg(6 至 38 kg)且接受 CRRT 的儿童。浓度-时间曲线最好用具有一级消除的单室模型描述。BW 和残余尿量()解释了一些个体间变异性分布容积(),其中 [公式:见文本],和清除率(CL),其中 [公式:见文本],其中 CL 和 分别为 6.78 L/h 和 55.0 L,归一化为 70-kg 受试者和中位残余尿量为 0.06 mL/kg/h。对于具有不同残余尿量(0、0.1、0.25 和 0.5 mL/kg/h)的 4 名典型患者的间歇性和连续给药模拟显示,对于残余尿量高于 0.1 mL/kg/h 的患者,根据 BW 和 MIC,连续输注可达到 PK 目标,而对于无尿患者,需要更频繁的间歇性剂量以避免积累。对于接受 CRRT 的危重症儿童,应通过使用递增剂量的连续输注来实现哌拉西林的最佳暴露,除了需要较少频率的间歇性剂量的无尿患者外。