Suppr超能文献

可解释人工智能有助于预测亚急性中风患者的上肢康复结果。

eXplainable AI Allows Predicting Upper Limb Rehabilitation Outcomes in Sub-Acute Stroke Patients.

作者信息

Gandolfi Marialuisa, Boscolo Galazzo Ilaria, Gasparin Pavan Rudy, Cruciani Federica, Vale Nicola, Picelli Alessandro, Storti Silvia Francesca, Smania Nicola, Menegaz Gloria

出版信息

IEEE J Biomed Health Inform. 2023 Jan;27(1):263-273. doi: 10.1109/JBHI.2022.3220179. Epub 2023 Jan 4.

Abstract

While stroke is one of the leading causes of disability, the prediction of upper limb (UL) functional recovery following rehabilitation is still unsatisfactory, hampered by the clinical complexity of post-stroke impairment. Predictive models leading to accurate estimates while revealing which features contribute most to the predictions are the key to unveil the mechanisms subserving the post-intervention recovery, prompting a new focus on individualized treatments and precision medicine in stroke. Machine learning (ML) and explainable artificial intelligence (XAI) are emerging as the enabling technology in different fields, being promising tools also in clinics. In this study, we had the twofold goal of evaluating whether ML can allow deriving accurate predictions of UL recovery in sub-acute patients, and disentangling the contribution of the variables shaping the outcomes. To do so, Random Forest equipped with four XAI methods was applied to interpret the results and assess the feature relevance and their consensus. Our results revealed increased performance when using ML compared to conventional statistical approaches. Moreover, the features deemed as the most relevant were concordant across the XAI methods, suggesting good stability of the results. In particular, the baseline motor impairment as measured by simple clinical scales had the largest impact, as expected. Our findings highlight the core role of ML not only for accurately predicting the individual outcome scores after rehabilitation, but also for making ML results interpretable when associated to XAI methods. This provides clinicians with robust predictions and reliable explanations that are key factors in therapeutic planning/monitoring of stroke patients.

摘要

虽然中风是导致残疾的主要原因之一,但由于中风后损伤的临床复杂性,康复后上肢(UL)功能恢复的预测仍不尽人意。能够得出准确估计值同时揭示哪些特征对预测贡献最大的预测模型,是揭示干预后恢复机制的关键,这促使人们重新关注中风的个体化治疗和精准医学。机器学习(ML)和可解释人工智能(XAI)正在成为不同领域的使能技术,在临床中也是很有前景的工具。在本研究中,我们有两个目标:评估ML是否能够对亚急性患者的UL恢复得出准确预测,以及厘清影响结果的变量的作用。为此,将配备四种XAI方法的随机森林应用于解释结果并评估特征相关性及其一致性。我们的结果显示,与传统统计方法相比,使用ML时性能有所提高。此外,在各种XAI方法中被认为最相关的特征是一致的,这表明结果具有良好的稳定性。特别是,正如预期的那样,通过简单临床量表测量的基线运动损伤影响最大。我们的研究结果强调了ML的核心作用,不仅在于准确预测康复后的个体结果评分,还在于当与XAI方法结合时使ML结果具有可解释性。这为临床医生提供了有力的预测和可靠的解释,而这是中风患者治疗计划/监测中的关键因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验