Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
Beijing Academy of Quantum Information Sciences, Beijing 100193, China.
Phys Chem Chem Phys. 2022 Nov 18;24(44):27495-27504. doi: 10.1039/d2cp03589h.
The knotted proteins are a class of rare but biologically important proteins, due to the special topology of their native structure. Here we present a simple method to identify the key residues for knotting and unknotting in a knotted protein, using the trefoil protein MJ0366 as an example. We first simulate the folding process the annealing molecular dynamics (AMD) simulations in the coarse-grained "Go"-like model. From the folding trajectories, we monitor the knotting process using the quantity "length of knot tails". In the meantime, we analyze the evolution of the local geometry of the trace with the help of the Discrete Frenet Frame (DFF). We identify the key residues by correlating the local geometry at each residue with the variable "length of knot tails" in the folding process, where a higher correlation coefficient indicates that the residue is more important for knotting. We validate our method by comparing with the experimental results in the literature. With the same method, we further predict the key residues for unknotting MJ0366 using the AMD simulations in both the coarse-grained "Go"-like model and all-atom (AA) force field model, respectively. We find that the key residues for unknotting are partially overlapped with those for knotting, indicating that the pathways for unknotting and knotting are generally similar except for the existence of some non-native contact interactions in the unknotting process. This method can provide a new insight for understanding the knotting and unknotting processes of a knotted protein.
纽结蛋白是一类罕见但具有重要生物学意义的蛋白质,这是由于其天然结构的特殊拓扑结构所致。在这里,我们以三叶因子蛋白 MJ0366 为例,提出了一种简单的方法来识别纽结和解纽过程中的关键残基。我们首先使用粗粒“Go”模型中的退火分子动力学 (AMD) 模拟来模拟折叠过程。从折叠轨迹中,我们使用“纽结尾部长度”这一数量来监测纽结过程。同时,我们借助离散弗雷内特框架 (DFF) 分析轨迹中迹线的局部几何形状的演变。我们通过将每个残基的局部几何形状与折叠过程中的变量“纽结尾部长度”相关联来识别关键残基,其中相关系数越高表明该残基对纽结越重要。我们通过与文献中的实验结果进行比较来验证我们的方法。使用相同的方法,我们分别使用粗粒“Go”模型和全原子 (AA) 力场模型中的 AMD 模拟来预测 MJ0366 的解纽关键残基。我们发现解纽的关键残基与纽结的关键残基部分重叠,这表明解纽和纽结的途径通常相似,除了解纽过程中存在一些非天然接触相互作用外。这种方法可以为理解纽结蛋白的纽结和解纽过程提供新的见解。