Artificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain.
William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
Sci Rep. 2022 Nov 7;12(1):18876. doi: 10.1038/s41598-022-21663-w.
Atrial fibrillation (AF) is the most common cardiac arrhythmia. It is associated with a higher risk of important adverse health outcomes such as stroke and death. AF is linked to distinct electro-anatomic alterations. The main tool for AF diagnosis is the Electrocardiogram (ECG). However, an ECG recorded at a single time point may not detect individuals with paroxysmal AF. In this study, we developed machine learning models for discrimination of prevalent AF using a combination of image-derived radiomics phenotypes and ECG features. Thus, we characterize the phenotypes of prevalent AF in terms of ECG and imaging alterations. Moreover, we explore sex-differential remodelling by building sex-specific models. Our integrative model including radiomics and ECG together resulted in a better performance than ECG alone, particularly in women. ECG had a lower performance in women than men (AUC: 0.77 vs 0.88, p < 0.05) but adding radiomics features, the accuracy of the model was able to improve significantly. The sensitivity also increased considerably in women by adding the radiomics (0.68 vs 0.79, p < 0.05) having a higher detection of AF events. Our findings provide novel insights into AF-related electro-anatomic remodelling and its variations by sex. The integrative radiomics-ECG model also presents a potential novel approach for earlier detection of AF.
心房颤动(AF)是最常见的心律失常。它与重要的健康不良后果(如中风和死亡)的风险增加有关。AF 与独特的电-解剖改变有关。AF 的主要诊断工具是心电图(ECG)。然而,单点记录的心电图可能无法检测出阵发性 AF 患者。在这项研究中,我们使用图像衍生的放射组学表型和 ECG 特征的组合来开发用于鉴别持续性 AF 的机器学习模型。因此,我们根据 ECG 和影像学改变来描述持续性 AF 的表型。此外,我们通过建立特定于性别的模型来探索性别差异重塑。我们的综合模型包括放射组学和 ECG,其性能优于单独的 ECG,尤其是在女性中。与男性相比,ECG 在女性中的性能较低(AUC:0.77 与 0.88,p<0.05),但添加放射组学特征后,模型的准确性能够显著提高。通过添加放射组学,女性的敏感性也大大提高(0.68 与 0.79,p<0.05),从而能够更有效地检测 AF 事件。我们的研究结果为 AF 相关的电-解剖重塑及其性别差异提供了新的见解。综合的放射组学-ECG 模型也为早期检测 AF 提供了一种新的潜在方法。