Research Centre for Cereal and Industrial Crops (CREA-CI), CREA - Council for Agricultural Research and Economics, 71122, Foggia, Italy.
Institute of Biosciences and Bioresources, (CNR-IBBR), 70126, Bari, Italy.
BMC Plant Biol. 2022 Nov 8;22(1):519. doi: 10.1186/s12870-022-03900-6.
Rapid reductions in emissions from fossil fuel burning are needed to curb global climate change. Biofuel production from crop residues can contribute to reducing the energy crisis and environmental deterioration. Wheat is a renewable source for biofuels owing to the low cost and high availability of its residues. Thus, identifying candidate genes controlling these traits is pivotal for efficient biofuel production. Here, six multi-locus genome-wide association (ML-GWAS) models were applied using 185 tetraploid wheat accessions to detect quantitative trait nucleotides (QTNs) for fifteen traits associated with biomass composition.
Among the 470 QTNs, only 72 identified by at least two models were considered as reliable. Among these latter, 16 also showed a significant effect on the corresponding trait (p.value < 0.05). Candidate genes survey carried out within 4 Mb flanking the QTNs, revealed putative biological functions associated with lipid transfer and metabolism, cell wall modifications, cell cycle, and photosynthesis. Four genes encoded as Cellulose Synthase (CeSa), Anaphase promoting complex (APC/C), Glucoronoxylan 4-O Methyltransferase (GXM) and HYPONASTIC LEAVES1 (HYL1) might be responsible for an increase in cellulose, and natural and acid detergent fiber (NDF and ADF) content in tetraploid wheat. In addition, the SNP marker RFL_Contig3228_2154 associated with the variation in stem solidness (Q.Scsb-3B) was validated through two molecular methods (High resolution melting; HRM and RNase H-dependent PCR; rhAMP).
The study provides new insights into the genetic basis of biomass composition traits on tetraploid wheat. The application of six ML-GWAS models on a panel of diverse wheat genotypes represents an efficient approach to dissect complex traits with low heritability such as wheat straw composition. The discovery of genes/genomic regions associated with biomass production and straw quality parameters is expected to accelerate the development of high-yielding wheat varieties useful for biofuel production.
需要迅速减少化石燃料燃烧产生的排放,以遏制全球气候变化。农作物秸秆生产生物燃料有助于缓解能源危机和环境恶化。由于小麦残留物成本低、可用性高,因此是生物燃料的可再生来源。因此,鉴定控制这些性状的候选基因对于高效生产生物燃料至关重要。在这里,使用 185 个四倍体小麦品系应用了 6 种多基因座全基因组关联(ML-GWAS)模型,以检测与生物量组成相关的 15 个性状的数量性状核苷酸(QTN)。
在 470 个 QTN 中,只有至少两种模型鉴定的 72 个 QTN 被认为是可靠的。在这些 QTN 中,有 16 个也对相应性状表现出显著影响(p.value<0.05)。在 QTN 侧翼 4 Mb 范围内进行的候选基因调查显示,与脂质转移和代谢、细胞壁修饰、细胞周期和光合作用相关的潜在生物学功能。四个基因编码为纤维素合酶(CeSa)、后期促进复合物(APC/C)、木聚糖 4-O 甲基转移酶(GXM)和 HYPOASTIC LEAVES1(HYL1),可能负责增加四倍体小麦中的纤维素以及天然和酸性洗涤剂纤维(NDF 和 ADF)含量。此外,与茎干硬度(Q.Scsb-3B)变化相关的 SNP 标记 RFL_Contig3228_2154 通过两种分子方法(高分辨率熔解;HRM 和依赖于 RNA 酶 H 的 PCR;rhAMP)进行了验证。
本研究为四倍体小麦生物量组成性状的遗传基础提供了新的见解。在一组不同的小麦基因型上应用 6 种 ML-GWAS 模型是一种有效的方法,可以剖析遗传力低的复杂性状,如小麦秸秆组成。发现与生物量生产和秸秆质量参数相关的基因/基因组区域有望加速高产小麦品种的开发,这些品种可用于生物燃料生产。