Suppr超能文献

用于医学诊断人工智能算法临床评估的方法。

Methods for Clinical Evaluation of Artificial Intelligence Algorithms for Medical Diagnosis.

机构信息

From the Department of Radiology and Research Institute of Radiology (S.H.P., J.E.P., D.W.K.) and Department of Biomedical Engineering (J.C.), Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea; Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea (K.H.); Department of Radiology, National Cancer Center, Goyang, South Korea (H.Y.J.); and Biomedical Engineering Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea (J.G.L.).

出版信息

Radiology. 2023 Jan;306(1):20-31. doi: 10.1148/radiol.220182. Epub 2022 Nov 8.

Abstract

Adequate clinical evaluation of artificial intelligence (AI) algorithms before adoption in practice is critical. Clinical evaluation aims to confirm acceptable AI performance through adequate external testing and confirm the benefits of AI-assisted care compared with conventional care through appropriately designed and conducted studies, for which prospective studies are desirable. This article explains some of the fundamental methodological points that should be considered when designing and appraising the clinical evaluation of AI algorithms for medical diagnosis. The specific topics addressed include the following: the importance of external testing of AI algorithms and strategies for conducting the external testing effectively, the various metrics and graphical methods for evaluating the AI performance as well as essential methodological points to note in using and interpreting them, paired study designs primarily for comparative performance evaluation of conventional and AI-assisted diagnoses, parallel study designs primarily for evaluating the effect of AI intervention with an emphasis on randomized clinical trials, and up-to-date guidelines for reporting clinical studies on AI, with an emphasis on guidelines registered in the EQUATOR Network library. Sound methodological knowledge of these topics will aid the design, execution, reporting, and appraisal of clinical evaluation of AI.

摘要

在将人工智能 (AI) 算法应用于实践之前,进行充分的临床评估至关重要。临床评估旨在通过充分的外部测试确认 AI 的可接受性能,并通过精心设计和实施的研究确认 AI 辅助护理与常规护理相比的益处,其中前瞻性研究是理想的。本文解释了在设计和评估用于医学诊断的 AI 算法的临床评估时应考虑的一些基本方法要点。涉及的具体主题包括:AI 算法外部测试的重要性和有效进行外部测试的策略,评估 AI 性能的各种指标和图形方法,以及在使用和解释它们时需要注意的基本方法要点,主要用于比较传统诊断和 AI 辅助诊断性能的配对研究设计,主要用于评估 AI 干预效果的平行研究设计,并强调在 EQUATOR 网络库中注册的指南,重点介绍 AI 相关临床研究报告的指南。对这些主题的深入了解将有助于设计、执行、报告和评估 AI 的临床评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验