Suppr超能文献

人工智能临床验证、器械审批和保险覆盖决策的关键原则。

Key Principles of Clinical Validation, Device Approval, and Insurance Coverage Decisions of Artificial Intelligence.

机构信息

Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

Department of Biomedical Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

出版信息

Korean J Radiol. 2021 Mar;22(3):442-453. doi: 10.3348/kjr.2021.0048.

Abstract

Artificial intelligence (AI) will likely affect various fields of medicine. This article aims to explain the fundamental principles of clinical validation, device approval, and insurance coverage decisions of AI algorithms for medical diagnosis and prediction. Discrimination accuracy of AI algorithms is often evaluated with the Dice similarity coefficient, sensitivity, specificity, and traditional or free-response receiver operating characteristic curves. Calibration accuracy should also be assessed, especially for algorithms that provide probabilities to users. As current AI algorithms have limited generalizability to real-world practice, clinical validation of AI should put it to proper external testing and assisting roles. External testing could adopt diagnostic case-control or diagnostic cohort designs. A diagnostic case-control study evaluates the technical validity/accuracy of AI while the latter tests the clinical validity/accuracy of AI in samples representing target patients in real-world clinical scenarios. Ultimate clinical validation of AI requires evaluations of its impact on patient outcomes, referred to as clinical utility, and for which randomized clinical trials are ideal. Device approval of AI is typically granted with proof of technical validity/accuracy and thus does not intend to directly indicate if AI is beneficial for patient care or if it improves patient outcomes. Neither can it categorically address the issue of limited generalizability of AI. After achieving device approval, it is up to medical professionals to determine if the approved AI algorithms are beneficial for real-world patient care. Insurance coverage decisions generally require a demonstration of clinical utility that the use of AI has improved patient outcomes.

摘要

人工智能(AI)可能会影响医学的各个领域。本文旨在解释用于医疗诊断和预测的 AI 算法的临床验证、设备批准和保险覆盖决策的基本原理。AI 算法的判别准确性通常通过 Dice 相似系数、敏感性、特异性以及传统或自由响应接收者操作特征曲线进行评估。还应评估校准准确性,特别是对于为用户提供概率的算法。由于当前的 AI 算法对现实世界的实践具有有限的通用性,因此 AI 的临床验证应将其置于适当的外部测试和辅助角色中。外部测试可以采用诊断病例对照或诊断队列设计。诊断病例对照研究评估 AI 的技术有效性/准确性,而后者则在代表现实世界临床场景中目标患者的样本中测试 AI 的临床有效性/准确性。AI 的最终临床验证需要评估其对患者结局的影响,即临床实用性,而随机临床试验是理想的。AI 的设备批准通常通过证明技术有效性/准确性来获得,因此并不直接表明 AI 是否有益于患者护理或是否改善患者结局。它也不能完全解决 AI 通用性有限的问题。在获得设备批准后,由医疗专业人员决定批准的 AI 算法是否有益于现实世界的患者护理。保险覆盖决策通常需要证明 AI 的使用改善了患者结局的临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c1c/7909857/1a2f8823bb89/kjr-22-442-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验