Suppr超能文献

基于计算机的蛋白质天门冬酰胺脱酰胺预测方法。

In Silico Prediction Method for Protein Asparagine Deamidation.

机构信息

Amgen Research, One Amgen Center Drive, Thousand Oaks, CA, USA.

出版信息

Methods Mol Biol. 2023;2552:199-217. doi: 10.1007/978-1-0716-2609-2_10.

Abstract

In silico prediction methods were developed to predict protein asparagine (Asn) deamidation. The method is based on understanding deamidation mechanism on structural level with machine learning. Our structure-based method is more accurate than the sequence-based method which is still widely used in protein engineering process. In addition, molecular dynamics simulation was applied to study the time occupancy of nucleophilic attack distance, which is hypothesized as the most important step toward the rate-limiting succinimide intermediate formation. A more accurate prediction method for distinguishing potentially liable amino acid residues would allow their elimination or reduction as early as possible in the drug discovery process. It is possible that such quantitative protein structure-property relationship tools can also be applied to other protein hotspot predictions.

摘要

我们开发了一种基于结构的计算预测方法,用于预测蛋白质天冬酰胺(Asn)脱酰胺化。该方法基于对结构水平上脱酰胺化机制的理解,结合机器学习算法。与在蛋白质工程过程中仍广泛使用的序列基方法相比,我们的结构基方法更加准确。此外,还应用分子动力学模拟研究了亲核进攻距离的时间占有率,该距离被假设为限速琥珀酰亚胺中间体形成的最重要步骤。区分潜在易反应氨基酸残基的更准确预测方法可以允许在药物发现过程中尽早消除或减少这些残基。这种定量蛋白质结构-性质关系工具也有可能被应用于其他蛋白质热点预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验