Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic.
Sci Rep. 2022 Nov 8;12(1):19025. doi: 10.1038/s41598-022-21812-1.
Detached off-grids, subject to the generated renewable energy (RE), need to balance and compensate the unstable power supply dependent on local source potential. Power quality (PQ) is a set of EU standards that state acceptable deviations in the parameters of electrical power systems to guarantee their operability without dropout. Optimization of the estimated PQ parameters in a day-horizon is essential in the operational planning of autonomous smart grids, which accommodate the norms for the specific equipment and user demands to avoid malfunctions. PQ data for all system states are not available for dozens of connected / switched on household appliances, defined by their binary load series only, as the number of combinations grows exponentially. The load characteristics and eventual RE contingent supply can result in system instability and unacceptable PQ events. Models, evolved by Artificial Intelligence (AI) methods using self-optimization algorithms, can estimate unknown cases and states in autonomous systems contingent on self-supply of RE power related to chaotic and intermitted local weather sources. A new multilevel extension procedure designed to incrementally improve the applicability and adaptability to training data. The initial AI model starts with binary load series only, which are insufficient to represent complex data patterns. The input vector is progressively extended with correlated PQ parameters at the next estimation level to better represent the active demand of the power consumer. Historical data sets comprise training samples for all PQ parameters, but only the load sequences of the switch-on appliances are available in the next estimation states. The most valuable PQ parameters are selected and estimated in the previous algorithm stages to be used as supplementary series in the next more precise computing. More complex models, using the previous PQ-data approximates, are formed at the secondary processing levels to estimate the target PQ-output in better quality. The new added input parameters allow us to evolve a more convenient model form. The proposed multilevel refinement algorithm can be generally applied in modelling of unknown sequence states of dynamical systems, initially described by binary series or other insufficient limited-data variables, which are inadequate in a problem representation. Most AI computing techniques can adapt this strategy to improve their adaptive learning and model performance.
孤岛运行,依赖于产生的可再生能源 (RE),需要平衡和补偿依赖于本地电源潜力的不稳定电源。电能质量 (PQ) 是一套欧盟标准,规定了电力系统参数的可接受偏差,以保证其在不停机的情况下运行。在自主智能电网的运行规划中,对一天内的估计 PQ 参数进行优化至关重要,这可以适应特定设备和用户需求的规范,以避免故障。对于数十个连接/开启的家用电器,由于其仅由二进制负载序列定义,因此无法获得所有系统状态的 PQ 数据,因为组合数量呈指数增长。负载特性和最终的 RE 应急供应可能导致系统不稳定和不可接受的 PQ 事件。使用自优化算法的人工智能 (AI) 方法演变的模型可以估计自主系统中未知的情况和状态,这些系统取决于与混沌和间歇性本地天气源相关的 RE 电力的自我供应。一种新的多级扩展程序旨在逐步提高适用性和对与 RE 功率相关的自供应的训练数据的适应性。初始 AI 模型仅从二进制负载序列开始,这些序列不足以表示复杂的数据模式。在下一个估计级别,输入向量将逐步扩展为相关的 PQ 参数,以更好地表示电力消费者的活跃需求。历史数据集包含所有 PQ 参数的训练样本,但在下一个估计状态中仅可用开关设备的负载序列。在之前的算法阶段中选择并估计最有价值的 PQ 参数,以便在下一个更精确的计算中用作补充序列。在二级处理级别使用以前的 PQ 数据近似值形成更复杂的模型,以更好的质量估计目标 PQ 输出。新添加的输入参数允许我们形成更方便的模型形式。所提出的多级细化算法通常可应用于最初由二进制序列或其他不足够的有限数据变量描述的动态系统未知序列状态的建模中,这些变量在问题表示中是不足的。大多数 AI 计算技术都可以适应这种策略,以提高自适应学习和模型性能。