Suppr超能文献

小幅度的头部摆动是由鹰蛾的多模式头部稳定反射产生的。

Small-amplitude head oscillations result from a multimodal head stabilization reflex in hawkmoths.

机构信息

National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.

出版信息

Biol Lett. 2022 Nov;18(11):20220199. doi: 10.1098/rsbl.2022.0199. Epub 2022 Nov 9.

Abstract

In flying insects, head stabilization is an essential reflex that helps to reduce motion blur during fast aerial manoeuvres. This reflex is multimodal and requires the integration of visual and antennal mechanosensory feedback in hawkmoths, each operating as a negative-feedback-control loop. As in any negative-feedback system, the head stabilization system possesses inherent oscillatory dynamics that depend on the rate at which the sensorimotor components of the reflex operate. Consistent with this expectation, we observed small-amplitude oscillations in the head motion (or head wobble) of the oleander hawkmoth, which are accentuated when sensory feedback is aberrant. Here, we show that these oscillations emerge from the inherent dynamics of the multimodal reflex underlying gaze stabilization, and that the amplitude of head wobble is a function of both the visual feedback and antennal mechanosensory feedback from the Johnston's organs. Our data support the hypothesis that head wobble results from a multimodal, dynamically stabilized reflex loop that mediates head positioning.

摘要

在飞行昆虫中,头部稳定是一种基本反射,有助于减少快速空中机动时的运动模糊。这种反射是多模态的,需要整合视觉和触角机械感觉反馈,在鹰蛾中,每个反馈都作为一个负反馈控制回路运行。与任何负反馈系统一样,头部稳定系统具有内在的振荡动力学,这取决于反射的传感器-运动组件的运行速度。与这一预期一致,我们观察到头部运动(或头部摆动)的小幅度振荡,当感觉反馈异常时,这种振荡会加剧。在这里,我们表明这些振荡源自眼球稳定的多模态反射的固有动力学,并且头部摆动的幅度是视觉反馈和来自约翰斯顿器官的触角机械感觉反馈的函数。我们的数据支持这样的假设,即头部摆动是由介导头部定位的多模态、动态稳定的反射环引起的。

相似文献

1
Small-amplitude head oscillations result from a multimodal head stabilization reflex in hawkmoths.
Biol Lett. 2022 Nov;18(11):20220199. doi: 10.1098/rsbl.2022.0199. Epub 2022 Nov 9.
3
The motor apparatus of head movements in the Oleander hawkmoth (Daphnis nerii, Lepidoptera).
J Comp Neurol. 2024 Jan;532(1):e25577. doi: 10.1002/cne.25577.
4
The mechanosensory-motor apparatus of antennae in the Oleander hawk moth (Daphnis nerii, Lepidoptera).
J Comp Neurol. 2018 Oct 1;526(14):2215-2230. doi: 10.1002/cne.24477. Epub 2018 Aug 22.
5
The roles of vision and antennal mechanoreception in hawkmoth flight control.
Elife. 2018 Dec 10;7:e37606. doi: 10.7554/eLife.37606.
6
Visual feedback influences antennal positioning in flying hawk moths.
J Exp Biol. 2014 Mar 15;217(Pt 6):908-17. doi: 10.1242/jeb.094276. Epub 2013 Nov 21.
7
Encoding properties of the mechanosensory neurons in the Johnston's organ of the hawk moth, Manduca sexta.
J Exp Biol. 2014 Sep 1;217(Pt 17):3045-56. doi: 10.1242/jeb.101568. Epub 2014 Jun 19.
8
Antennal mechanosensory neurons mediate wing motor reflexes in flying Drosophila.
J Neurosci. 2015 May 20;35(20):7977-91. doi: 10.1523/JNEUROSCI.0034-15.2015.
9
Tuneable reflexes control antennal positioning in flying hawkmoths.
Nat Commun. 2019 Dec 6;10(1):5593. doi: 10.1038/s41467-019-13595-3.
10
Antennal mechanosensors mediate flight control in moths.
Science. 2007 Feb 9;315(5813):863-6. doi: 10.1126/science.1133598.

引用本文的文献

1
Multisensory integration in insect flight control.
Biol Lett. 2024 Jan;20(1):20230565. doi: 10.1098/rsbl.2023.0565. Epub 2024 Jan 24.

本文引用的文献

2
Mechanisms of punctuated vision in fly flight.
Curr Biol. 2021 Sep 27;31(18):4009-4024.e3. doi: 10.1016/j.cub.2021.06.080. Epub 2021 Jul 29.
3
The roles of vision and antennal mechanoreception in hawkmoth flight control.
Elife. 2018 Dec 10;7:e37606. doi: 10.7554/eLife.37606.
4
Closed-Loop Control of Active Sensing Movements Regulates Sensory Slip.
Curr Biol. 2018 Dec 17;28(24):4029-4036.e4. doi: 10.1016/j.cub.2018.11.002. Epub 2018 Nov 29.
5
Mechanics of the thorax in flies.
J Exp Biol. 2017 Apr 15;220(Pt 8):1382-1395. doi: 10.1242/jeb.128363.
6
Cross-modal influence of mechanosensory input on gaze responses to visual motion in .
J Exp Biol. 2017 Jun 15;220(Pt 12):2218-2227. doi: 10.1242/jeb.146282. Epub 2017 Apr 6.
7
Unchanging visions: the effects and limitations of ocular stillness.
Philos Trans R Soc Lond B Biol Sci. 2017 Apr 19;372(1718). doi: 10.1098/rstb.2016.0204.
8
Evolution of Biological Image Stabilization.
Curr Biol. 2016 Oct 24;26(20):R1010-R1021. doi: 10.1016/j.cub.2016.08.059.
9
Dynamic modulation of visual and electrosensory gains for locomotor control.
J R Soc Interface. 2016 May;13(118). doi: 10.1098/rsif.2016.0057.
10
Airflow and optic flow mediate antennal positioning in flying honeybees.
Elife. 2016 Apr 20;5:e14449. doi: 10.7554/eLife.14449.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验