National Centre for Biological Sciences, TIFR, Bangalore, Karnataka, 560065, India.
Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
J Comp Neurol. 2018 Oct 1;526(14):2215-2230. doi: 10.1002/cne.24477. Epub 2018 Aug 22.
Insect antennae are sensory organs of great importance because they can sense diverse environmental stimuli. In addition to serving as primary olfactory organs of insects, antennae also sense a wide variety of mechanosensory stimuli, ranging from low-frequency airflow or gravity cues to high-frequency antennal vibrations due to sound, flight or touch. The basal segments of the antennae house multiple types of mechanosensory structures that prominently include the sensory hair plates, or Böhm's bristles, which measure the gross extent of antennal movement, and a ring of highly sensitive scolopidial neurons, collectively called the Johnston's organs, which record subtle flagellar vibrations. To fulfill their multifunctional mechanosensory role, the antennae of insects must actively move thereby enhancing their ability to sense various cues in the surrounding environment. This tight coupling between antennal mechanosensory function and antennal movements means that the underlying mechanosensory-motor apparatus constitutes a highly tuned feedback-controlled system. Our study aims to explore how the sensory and motor components of this system are configured to enable such functional versatility. We describe antennal mechanosensory neurons, their central projections in the brain relative to antennal motor neurons and the internal morphology of various antennal muscles that actuate the basal segments of the antenna. We studied these in the Oleander hawk moth (Daphnis nerii) using a combination of techniques such as neural dye fills, confocal microscopy, scanning electron microscopy and X-ray tomography. Our study thus provides a detailed anatomical picture of the antennal mechanosensory-motor apparatus, which in turn provides key insights into its multifunctional role.
昆虫的触角是非常重要的感觉器官,因为它们可以感知各种环境刺激。除了作为昆虫的主要嗅觉器官外,触角还能感知各种各样的机械感觉刺激,从低频气流或重力线索到由于声音、飞行或触摸而产生的高频触角振动。触角的基部包含多种机械感觉结构,其中主要包括感觉毛板或博姆氏刚毛,它们测量触角运动的大致范围,以及一圈高度敏感的感器神经元,统称为约翰斯顿氏器官,它们记录鞭毛的细微振动。为了发挥其多功能的机械感觉作用,昆虫的触角必须主动移动,从而增强它们感知周围环境中各种线索的能力。这种触角机械感觉功能和运动之间的紧密耦合意味着,潜在的机械感觉-运动装置构成了一个高度调谐的反馈控制系统。我们的研究旨在探索这个系统的感觉和运动组件是如何配置的,以实现这种多功能性。我们描述了触角机械感觉神经元、它们在大脑中相对于触角运动神经元的中枢投射以及驱动触角基部的各种触角肌肉的内部形态。我们在夹竹桃 Hawk 蛾(Daphnis nerii)中使用了神经染料填充、共聚焦显微镜、扫描电子显微镜和 X 射线断层扫描等技术来研究这些。因此,我们的研究提供了触角机械感觉-运动装置的详细解剖图,这反过来又为其多功能作用提供了关键的见解。