Cao Penghui
Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA 92697, USA. Email:
Sci Adv. 2022 Nov 11;8(45):eabq7433. doi: 10.1126/sciadv.abq7433. Epub 2022 Nov 9.
Multi-principal element alloys (MPEAs) containing three or more components in high concentrations render a tunable chemical short-range order (SRO). Leveraging large-scale atomistic simulations, we probe the limit of Hall-Petch strengthening and deformation mechanisms in a model CrCoNi alloy and unravel chemical ordering effects. The presence of SRO appreciably increases the maximum strength and lowers the propensity for faulting and structure transformation, accompanied by intensification of planar slip and strain localization. Deformation grains exhibit notably different microstructures and dislocation patterns that prominently depend on their crystallographic orientation and the number of active slip planes. Grain of single-planar slip attains the highest volume fraction of deformation-induced structure transformation, and grain with double-slip planes develops the densest dislocation network. These results advancing the fundamental understanding of deformation mechanisms and dislocation patterning in MPEAs suggest a mechanistic strategy for tuning mechanical behavior through simultaneously tailoring grain texture and local chemical order.
含有三种或更多高浓度成分的多主元合金(MPEA)呈现出可调节的化学短程有序(SRO)。利用大规模原子模拟,我们探究了模型CrCoNi合金中霍尔 - 佩奇强化和变形机制的极限,并揭示了化学有序效应。SRO的存在显著提高了最大强度,降低了位错和结构转变的倾向,同时伴随着平面滑移和应变局部化的增强。变形晶粒表现出明显不同的微观结构和位错模式,这主要取决于它们的晶体取向和活动滑移面的数量。单平面滑移的晶粒在变形诱导结构转变中具有最高的体积分数,而具有双滑移面的晶粒则形成了最密集的位错网络。这些结果推进了对MPEA中变形机制和位错图案化的基本理解,提出了一种通过同时调整晶粒织构和局部化学有序来调节力学行为的机理策略。