Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;
Proc Natl Acad Sci U S A. 2018 Sep 4;115(36):8919-8924. doi: 10.1073/pnas.1808660115. Epub 2018 Aug 20.
High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure-property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from -43 to 30 mJ⋅m and from -28 to 66 mJ⋅m, respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic () and hexagonal close-packed () phases, which affects the occurrence of transformation-induced plasticity. This theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing-structure-property relationships to guide the science-based design of new HEAs with targeted mechanical behavior.
高熵合金(HEAs)因其独特的机械性能而成为一类引人注目的新型金属材料。由于其独特的机械性能所基于的成分无序性,要深入了解这些材料的结构-性能关系一直具有挑战性。因此,在这项工作中,我们采用第一性原理计算来研究局部化学有序性的本质,并确定其与 CrCoNi 中熵固溶体合金固有和外在堆垛层错能(SFE)的关系,该合金的强度、延展性和韧性特性的综合表现接近最佳纪录。我们发现,平均固有和外在 SFE 都具有高度可调性,随着局部化学有序度的增加,其值分别在-43 至 30 mJ·m 和-28 至 66 mJ·m 之间变化。局部有序状态也与面心立方(fcc)和六方密排(hcp)相之间的能量差强烈相关,这会影响相变诱发塑性的发生。这项理论研究表明,化学短程有序在 HEAs 中是热力学有利的,可以通过调整来影响这些合金的机械性能。因此,该研究解决了建立稳健的加工-结构-性能关系的迫切需求,以指导具有目标机械性能的新型 HEAs 的科学设计。