Oishi Asako, Tatara Ryoichi, Togo Eiichi, Inoue Hiroshi, Yasuno Satoshi, Komaba Shinichi
Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan.
Tosoh Corp., 1-8 Kasumi, Yokkaichi-Shi, Mie 510-8540, Japan.
ACS Appl Mater Interfaces. 2022 Nov 23;14(46):51808-51818. doi: 10.1021/acsami.2c11695. Epub 2022 Nov 9.
Although the increasing demand for high-energy-density lithium-ion batteries (LIBs) has inspired extensive research on high-voltage cathode materials, such as LiNiMnO (LNMO), their commercialization is hindered by problems associated with the decomposition of common carbonate solvent-based electrolytes at elevated voltages. To address these problems, we prepared high-voltage LNMO composite electrodes using five polymer binders (two sulfated and two nonsulfated alginate binders and a poly(vinylidene fluoride) conventional binder) and compared their electrochemical performances at ∼5 V vs Li/Li. The effects of binder type on electrode performance were probed by analyzing cycled electrodes using soft/hard X-ray photoelectron spectroscopy and scanning transmission electron microscopy. The best-performing sulfated binder, sulfated alginate, uniformly covers the surface of LNMO and increased its affinity for the electrolyte. The electrolyte decomposition products generated in the initial charge-discharge cycle on the alginate-covered electrode participated in the formation of a protective passivation layer that suppressed further decomposition during subsequent cycles, resulting in enhanced cycling and rate performances. The results of this study provide a basis for the cost-effective and technically undemanding fabrication of high-energy-density LIBs.
尽管对高能量密度锂离子电池(LIBs)不断增长的需求激发了对诸如LiNiMnO(LNMO)等高压阴极材料的广泛研究,但其商业化却因与常见的基于碳酸盐溶剂的电解质在高电压下分解相关的问题而受阻。为了解决这些问题,我们使用五种聚合物粘合剂(两种硫酸化和两种非硫酸化的海藻酸盐粘合剂以及一种聚偏二氟乙烯传统粘合剂)制备了高压LNMO复合电极,并比较了它们在相对于Li/Li约5 V时的电化学性能。通过使用软/硬X射线光电子能谱和扫描透射电子显微镜分析循环后的电极,探究了粘合剂类型对电极性能的影响。性能最佳的硫酸化粘合剂,即硫酸化海藻酸盐,均匀地覆盖在LNMO表面,并增加了其对电解质的亲和力。在海藻酸盐覆盖的电极上首次充放电循环中产生的电解质分解产物参与形成了一个保护性钝化层,该钝化层抑制了后续循环中的进一步分解,从而提高了循环性能和倍率性能。本研究结果为高能量密度LIBs的经济高效且技术要求不高的制造提供了依据。