Rao Lalith, Jiao Xinwei, Yu Chan-Yeop, Schmidt Adam, O'Meara Cody, Seidt Jeremy, Sayre Jay R, Khalifa Yehia M, Kim Jung-Hyun
Center for Automotive Research, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
ACS Appl Mater Interfaces. 2022 Jan 12;14(1):861-872. doi: 10.1021/acsami.1c19554. Epub 2021 Dec 29.
High-voltage LiNiMnO (LNMO) spinel offers high specific energy and good rate capability with relatively low raw-material cost due to cobalt-free and manganese-rich chemical compositions. Also, increasing mass loading (mg/cm) by thickening cathodes has been one of the focused areas to greatly improve the energy density of lithium-ion batteries (LIBs) at the cell level. The LNMO cathode made with a polyvinylidene fluoride (PVdF) binder, however, suffers from an oxidative decomposition of liquid electrolytes and cathode delamination from a current collector. This problem is exacerbated with an increase in thickness. In this study, we developed a lithium polyacrylate (LiPAA)-sodium alginate (Na-Alg) composite binder series that offer positive multifunctions such as enhancing cathode adhesion and cohesion, improving cycle life, creating an effective passivating layer at the cathode-electrolyte interface (CEI), and lowering cell impedance. Comprehensive design of systematic experiments revealed a close chemo-mechano-electrochemical relationship in the thick high-voltage cathodes. Among the various binder compositions, the LiPAA (30 wt %)-Na-Alg (70 wt %) binder offered a strong adhesion property and positive multifunctions at the CEI layer, which consequently stabilized the solid-electrolyte interfacial (SEI) layer on the graphite anode and improved LIB performances. This novel composite binder will be applicable to various types of thick cathodes in future studies.
高压LiNiMnO(LNMO)尖晶石由于其无钴且富锰的化学成分,具有较高的比能量和良好的倍率性能,同时原材料成本相对较低。此外,通过增加阴极厚度来提高质量负载(mg/cm),一直是在电池层面大幅提高锂离子电池(LIB)能量密度的重点研究领域之一。然而,用聚偏氟乙烯(PVdF)粘结剂制成的LNMO阴极会出现液体电解质的氧化分解以及阴极与集流体分层的问题。随着厚度增加,这个问题会更加严重。在本研究中,我们开发了一种聚丙烯酸锂(LiPAA)-海藻酸钠(Na-Alg)复合粘结剂系列,该系列具有多种积极功能,如增强阴极的附着力和内聚力、提高循环寿命、在阴极-电解质界面(CEI)形成有效的钝化层以及降低电池阻抗。系统实验的综合设计揭示了厚高压阴极中存在紧密的化学-机械-电化学关系。在各种粘结剂组成中,LiPAA(30 wt%)-Na-Alg(70 wt%)粘结剂在CEI层具有很强的附着力和多种积极功能,从而稳定了石墨阳极上的固体电解质界面(SEI)层,并改善了LIB的性能。这种新型复合粘结剂将在未来的研究中应用于各种类型的厚阴极。