文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

腹部结构的非对比和对比增强 CT 图像的多器官分割。

Multi-organ segmentation of abdominal structures from non-contrast and contrast enhanced CT images.

机构信息

The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA.

Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Sci Rep. 2022 Nov 9;12(1):19093. doi: 10.1038/s41598-022-21206-3.


DOI:10.1038/s41598-022-21206-3
PMID:36351987
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9646761/
Abstract

Manually delineating upper abdominal organs at risk (OARs) is a time-consuming task. To develop a deep-learning-based tool for accurate and robust auto-segmentation of these OARs, forty pancreatic cancer patients with contrast-enhanced breath-hold computed tomographic (CT) images were selected. We trained a three-dimensional (3D) U-Net ensemble that automatically segments all organ contours concurrently with the self-configuring nnU-Net framework. Our tool's performance was assessed on a held-out test set of 30 patients quantitatively. Five radiation oncologists from three different institutions assessed the performance of the tool using a 5-point Likert scale on an additional 75 randomly selected test patients. The mean (± std. dev.) Dice similarity coefficient values between the automatic segmentation and the ground truth on contrast-enhanced CT images were 0.80 ± 0.08, 0.89 ± 0.05, 0.90 ± 0.06, 0.92 ± 0.03, 0.96 ± 0.01, 0.97 ± 0.01, 0.96 ± 0.01, and 0.96 ± 0.01 for the duodenum, small bowel, large bowel, stomach, liver, spleen, right kidney, and left kidney, respectively. 89.3% (contrast-enhanced) and 85.3% (non-contrast-enhanced) of duodenum contours were scored as a 3 or above, which required only minor edits. More than 90% of the other organs' contours were scored as a 3 or above. Our tool achieved a high level of clinical acceptability with a small training dataset and provides accurate contours for treatment planning.

摘要

手动描绘上腹部危及器官 (OARs) 是一项耗时的任务。为了开发一种基于深度学习的工具,用于准确、稳健地自动分割这些 OARs,我们选择了 40 名患有对比增强屏气 CT(CT)图像的胰腺癌患者。我们使用 3D U-Net 集合训练了一种自动分割所有器官轮廓的工具,该工具与自配置 nnU-Net 框架一起使用。我们的工具在 30 名患者的独立测试集中进行了定量评估。来自三个不同机构的五名放射肿瘤学家使用 5 分李克特量表对另外 75 名随机选择的测试患者的工具性能进行了评估。自动分割与增强 CT 图像上的真实分割之间的平均(±标准差)Dice 相似系数值分别为 0.80±0.08、0.89±0.05、0.90±0.06、0.92±0.03、0.96±0.01、0.97±0.01、0.96±0.01 和 0.96±0.01,用于十二指肠、小肠、大肠、胃、肝、脾、右肾和左肾。89.3%(增强)和 85.3%(非增强)的十二指肠轮廓评分在 3 分或以上,仅需进行少量编辑。超过 90%的其他器官轮廓评分在 3 分或以上。我们的工具使用小的训练数据集实现了高水平的临床可接受性,并为治疗计划提供了准确的轮廓。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9b/9646761/dad8999862bf/41598_2022_21206_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9b/9646761/5fac6c8c7bfb/41598_2022_21206_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9b/9646761/3bd2ebef1e7a/41598_2022_21206_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9b/9646761/92502e517118/41598_2022_21206_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9b/9646761/ede621c9cf2f/41598_2022_21206_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9b/9646761/fd4d575bc942/41598_2022_21206_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9b/9646761/dad8999862bf/41598_2022_21206_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9b/9646761/5fac6c8c7bfb/41598_2022_21206_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9b/9646761/3bd2ebef1e7a/41598_2022_21206_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9b/9646761/92502e517118/41598_2022_21206_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9b/9646761/ede621c9cf2f/41598_2022_21206_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9b/9646761/fd4d575bc942/41598_2022_21206_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9b/9646761/dad8999862bf/41598_2022_21206_Fig6_HTML.jpg

相似文献

[1]
Multi-organ segmentation of abdominal structures from non-contrast and contrast enhanced CT images.

Sci Rep. 2022-11-9

[2]
ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.

Med Phys. 2021-1

[3]
Automatic multiorgan segmentation in thorax CT images using U-net-GAN.

Med Phys. 2019-3-22

[4]
AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.

Med Phys. 2018-12-17

[5]
ThoraxNet: a 3D U-Net based two-stage framework for OAR segmentation on thoracic CT images.

Phys Eng Sci Med. 2022-3

[6]
Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer.

Radiat Oncol. 2019-11-27

[7]
Self-paced DenseNet with boundary constraint for automated multi-organ segmentation on abdominal CT images.

Phys Med Biol. 2020-7-13

[8]
CT-based multi-organ segmentation using a 3D self-attention U-net network for pancreatic radiotherapy.

Med Phys. 2020-9

[9]
Weaving attention U-net: A novel hybrid CNN and attention-based method for organs-at-risk segmentation in head and neck CT images.

Med Phys. 2021-11

[10]
Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework.

Eur Radiol. 2022-6

引用本文的文献

[1]
Open-source domain adaptation to handle data shift for volumetric segmentation-use case kidney segmentation.

Eur Radiol. 2025-6-28

[2]
Children Are Not Small Adults: Addressing Limited Generalizability of an Adult Deep Learning CT Organ Segmentation Model to the Pediatric Population.

J Imaging Inform Med. 2025-6

[3]
Autocontouring of primary lung lesions and nodal disease for radiotherapy based only on computed tomography images.

Phys Imaging Radiat Oncol. 2024-8-24

[4]
Landmark-based auto-contouring of clinical target volumes for radiotherapy of nasopharyngeal cancer.

J Appl Clin Med Phys. 2024-9

[5]
Improved automatic segmentation of brain metastasis gross tumor volume in computed tomography images for radiotherapy: a position attention module for U-Net architecture.

Quant Imaging Med Surg. 2024-7-1

[6]
Enhanced Domain Adaptation for Foot Ulcer Segmentation Through Mixing Self-Trained Weak Labels.

J Imaging Inform Med. 2025-2

[7]
Automated Segmentation of Lymph Nodes on Neck CT Scans Using Deep Learning.

J Imaging Inform Med. 2024-12

[8]
Evolving Horizons in Radiation Therapy Auto-Contouring: Distilling Insights, Embracing Data-Centric Frameworks, and Moving Beyond Geometric Quantification.

Adv Radiat Oncol. 2024-4-21

[9]
Fully automated deep learning based auto-contouring of liver segments and spleen on contrast-enhanced CT images.

Sci Rep. 2024-2-26

[10]
Automatic end-to-end VMAT treatment planning for rectal cancers.

J Appl Clin Med Phys. 2024-4

本文引用的文献

[1]
Technical Note: Dose prediction for head and neck radiotherapy using a three-dimensional dense dilated U-net architecture.

Med Phys. 2021-9

[2]
Development and dosimetric assessment of an automatic dental artifact classification tool to guide artifact management techniques in a fully automated treatment planning workflow.

Comput Med Imaging Graph. 2021-6

[3]
Impact of slice thickness, pixel size, and CT dose on the performance of automatic contouring algorithms.

J Appl Clin Med Phys. 2021-5

[4]
Training deep-learning segmentation models from severely limited data.

Med Phys. 2021-4

[5]
Evaluation of a multiview architecture for automatic vertebral labeling of palliative radiotherapy simulation CT images.

Med Phys. 2020-11

[6]
CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation.

Med Image Anal. 2021-4

[7]
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.

Nat Methods. 2021-2

[8]
Using Auto-Segmentation to Reduce Contouring and Dose Inconsistency in Clinical Trials: The Simulated Impact on RTOG 0617.

Int J Radiat Oncol Biol Phys. 2021-4-1

[9]
The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge.

Med Image Anal. 2021-1

[10]
Automatic contouring system for cervical cancer using convolutional neural networks.

Med Phys. 2020-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索