The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA.
Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Sci Rep. 2022 Nov 9;12(1):19093. doi: 10.1038/s41598-022-21206-3.
Manually delineating upper abdominal organs at risk (OARs) is a time-consuming task. To develop a deep-learning-based tool for accurate and robust auto-segmentation of these OARs, forty pancreatic cancer patients with contrast-enhanced breath-hold computed tomographic (CT) images were selected. We trained a three-dimensional (3D) U-Net ensemble that automatically segments all organ contours concurrently with the self-configuring nnU-Net framework. Our tool's performance was assessed on a held-out test set of 30 patients quantitatively. Five radiation oncologists from three different institutions assessed the performance of the tool using a 5-point Likert scale on an additional 75 randomly selected test patients. The mean (± std. dev.) Dice similarity coefficient values between the automatic segmentation and the ground truth on contrast-enhanced CT images were 0.80 ± 0.08, 0.89 ± 0.05, 0.90 ± 0.06, 0.92 ± 0.03, 0.96 ± 0.01, 0.97 ± 0.01, 0.96 ± 0.01, and 0.96 ± 0.01 for the duodenum, small bowel, large bowel, stomach, liver, spleen, right kidney, and left kidney, respectively. 89.3% (contrast-enhanced) and 85.3% (non-contrast-enhanced) of duodenum contours were scored as a 3 or above, which required only minor edits. More than 90% of the other organs' contours were scored as a 3 or above. Our tool achieved a high level of clinical acceptability with a small training dataset and provides accurate contours for treatment planning.
手动描绘上腹部危及器官 (OARs) 是一项耗时的任务。为了开发一种基于深度学习的工具,用于准确、稳健地自动分割这些 OARs,我们选择了 40 名患有对比增强屏气 CT(CT)图像的胰腺癌患者。我们使用 3D U-Net 集合训练了一种自动分割所有器官轮廓的工具,该工具与自配置 nnU-Net 框架一起使用。我们的工具在 30 名患者的独立测试集中进行了定量评估。来自三个不同机构的五名放射肿瘤学家使用 5 分李克特量表对另外 75 名随机选择的测试患者的工具性能进行了评估。自动分割与增强 CT 图像上的真实分割之间的平均(±标准差)Dice 相似系数值分别为 0.80±0.08、0.89±0.05、0.90±0.06、0.92±0.03、0.96±0.01、0.97±0.01、0.96±0.01 和 0.96±0.01,用于十二指肠、小肠、大肠、胃、肝、脾、右肾和左肾。89.3%(增强)和 85.3%(非增强)的十二指肠轮廓评分在 3 分或以上,仅需进行少量编辑。超过 90%的其他器官轮廓评分在 3 分或以上。我们的工具使用小的训练数据集实现了高水平的临床可接受性,并为治疗计划提供了准确的轮廓。
Med Phys. 2019-3-22
Phys Eng Sci Med. 2022-3
Phys Imaging Radiat Oncol. 2024-8-24
J Appl Clin Med Phys. 2024-9
J Imaging Inform Med. 2025-2
J Imaging Inform Med. 2024-12
J Appl Clin Med Phys. 2024-4
J Appl Clin Med Phys. 2021-5
Med Image Anal. 2021-4
Int J Radiat Oncol Biol Phys. 2021-4-1