Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
The University of Texas MD Anderson Graduate School of Biomedical Science, Houston, TX, 77030, USA.
Med Phys. 2020 Nov;47(11):5592-5608. doi: 10.1002/mp.14415. Epub 2020 Sep 15.
The purpose of this work was to evaluate the performance of X-Net, a multiview deep learning architecture, to automatically label vertebral levels (S2-C1) in palliative radiotherapy simulation CT scans.
For each patient CT scan, our automated approach 1) segmented spinal canal using a convolutional-neural network (CNN), 2) formed sagittal and coronal intensity projection pairs, 3) labeled vertebral levels with X-Net, and 4) detected irregular intervertebral spacing using an analytic methodology. The spinal canal CNN was trained via fivefold cross validation using 1,966 simulation CT scans and evaluated on 330 CT scans. After labeling vertebral levels (S2-C1) in 897 palliative radiotherapy simulation CT scans, a volume of interest surrounding the spinal canal in each patient's CT scan was converted into sagittal and coronal intensity projection image pairs. Then, intensity projection image pairs were augmented and used to train X-Net to automatically label vertebral levels using fivefold cross validation (n = 803). Prior to testing upon the final test set (n = 94), CT scans of patients with anatomical abnormalities, surgical implants, or other atypical features from the final test set were placed in an outlier group (n = 20), whereas those without these features were placed in a normative group (n = 74). The performance of X-Net, X-Net Ensemble, and another leading vertebral labeling architecture (Btrfly Net) was evaluated on both groups using identification rate, localization error, and other metrics. The performance of our approach was also evaluated on the MICCAI 2014 test dataset (n = 60). Finally, a method to detect irregular intervertebral spacing was created based on the rate of change in spacing between predicted vertebral body locations and was also evaluated using the final test set. Receiver operating characteristic analysis was used to investigate the performance of the method to detect irregular intervertebral spacing.
The spinal canal architecture yielded centroid coordinates spanning S2-C1 with submillimeter accuracy (mean ± standard deviation, 0.399 ± 0.299 mm; n = 330 patients) and was robust in the localization of spinal canal centroid to surgical implants and widespread metastases. Cross-validation testing of X-Net for vertebral labeling revealed that the deep learning model performance (F score, precision, and sensitivity) improved with CT scan length. The X-Net, X-Net Ensemble, and Btrfly Net mean identification rates and localization errors were 92.4% and 2.3 mm, 94.2% and 2.2 mm, and 90.5% and 3.4 mm, respectively, in the final test set and 96.7% and 2.2 mm, 96.9% and 2.0 mm, and 94.8% and 3.3 mm, respectively, within the normative group of the final test set. The X-Net Ensemble yielded the highest percentage of patients (94%) having all vertebral bodies identified correctly in the final test set when the three most inferior and superior vertebral bodies were excluded from the CT scan. The method used to detect labeling failures had 67% sensitivity and 95% specificity when combined with the X-Net Ensemble and flagged five of six patients with atypical vertebral counts (additional thoracic (T13), additional lumbar (L6) or only four lumbar vertebrae). Mean identification rate on the MICCAI 2014 dataset using an X-Net Ensemble was increased from 86.8% to 91.3% through the use of transfer learning and obtained state-of-the-art results for various regions of the spine.
We trained X-Net, our unique convolutional neural network, to automatically label vertebral levels from S2 to C1 on palliative radiotherapy CT images and found that an ensemble of X-Net models had high vertebral body identification rate (94.2%) and small localization errors (2.2 ± 1.8 mm). In addition, our transfer learning approach achieved state-of-the-art results on a well-known benchmark dataset with high identification rate (91.3%) and low localization error (3.3 mm ± 2.7 mm). When we pre-screened radiotherapy CT images for the presence of hardware, surgical implants, or other anatomic abnormalities prior to the use of X-Net, it labeled the spine correctly in more than 97% of patients and 94% of patients when scans were not prescreened. Automatically generated labels are robust to widespread vertebral metastases and surgical implants and our method to detect labeling failures based on neighborhood intervertebral spacing can reliably identify patients with an additional lumbar or thoracic vertebral body.
本研究旨在评估 X-Net 这一多视图深度学习架构在姑息性放疗模拟 CT 扫描中自动标注 S2-C1 椎体水平的性能。
对于每位患者的 CT 扫描,我们的自动方法 1)使用卷积神经网络(CNN)分割椎管,2)形成矢状面和冠状面强度投影对,3)使用 X-Net 标注椎体水平,4)使用分析方法检测不规则的椎间间距。使用五折交叉验证方法对椎管 CNN 进行训练,使用 1966 次模拟 CT 扫描,对 330 次 CT 扫描进行评估。在对 897 次姑息性放疗模拟 CT 扫描中的 S2-C1 椎体水平进行标注后,每位患者 CT 扫描中的椎管周围感兴趣区域被转换为矢状面和冠状面强度投影图像对。然后,对强度投影图像对进行扩充,并使用五折交叉验证(n=803)对 X-Net 进行训练,以自动标注椎体水平。在对最终测试集(n=94)进行测试之前,将来自最终测试集的具有解剖异常、手术植入物或其他非典型特征的患者的 CT 扫描放入异常组(n=20),而没有这些特征的患者则放入正常组(n=74)。使用识别率、定位误差和其他指标评估 X-Net、X-Net 集成和另一种领先的椎体标注架构(Btrfly Net)在这两组中的性能。还使用 MICCAI 2014 测试数据集(n=60)评估了我们方法的性能。最后,根据预测椎体位置之间的间距变化创建了一种检测不规则椎间间距的方法,并使用最终测试集进行了评估。使用接收者操作特征分析(receiver operating characteristic analysis)研究了检测不规则椎间间距的方法的性能。
椎管结构产生的质心坐标跨越 S2-C1,精度达到亚毫米级(平均值±标准偏差,0.399±0.299mm;n=330 例患者),并且在定位椎管质心时对手术植入物和广泛转移具有鲁棒性。对 X-Net 进行椎体标注的交叉验证测试显示,深度学习模型的性能(F 分数、精度和敏感性)随着 CT 扫描长度的增加而提高。X-Net、X-Net 集成和 Btrfly Net 的平均识别率和定位误差分别为 92.4%和 2.3mm、94.2%和 2.2mm、90.5%和 3.4mm,分别在最终测试集中,96.7%和 2.2mm、96.9%和 2.0mm、94.8%和 3.3mm,分别在最终测试集的正常组中。当排除 CT 扫描中最下和最上三个椎体时,X-Net 集成的方法有最高的患者百分比(94%)能够正确识别所有椎体。结合 X-Net 集成和标记 6 例具有非典型椎体数量的患者中的 5 例(额外的胸椎(T13)、额外的腰椎(L6)或只有四个腰椎),用于检测标注失败的方法的灵敏度为 67%,特异性为 95%。在使用 X-Net 集成的情况下,通过使用迁移学习,MICCAI 2014 数据集的平均识别率从 86.8%提高到 91.3%,并获得了各种脊柱区域的最新结果。
我们训练了 X-Net,这是我们独特的卷积神经网络,用于自动标注姑息性放疗 CT 图像中的 S2-C1 椎体水平,发现 X-Net 模型的集成具有很高的椎体识别率(94.2%)和较小的定位误差(2.2±1.8mm)。此外,我们的迁移学习方法在具有高识别率(91.3%)和低定位误差(3.3mm±2.7mm)的知名基准数据集上取得了最新的结果。当我们在使用 X-Net 之前对放疗 CT 图像进行预筛查,以检测硬件、手术植入物或其他解剖异常时,它在超过 97%的患者和 94%的无预筛查患者中正确标注了脊柱。自动生成的标签对广泛的椎体转移和手术植入物具有鲁棒性,并且我们基于相邻椎间间距的检测标注失败的方法可以可靠地识别具有额外的胸腰椎体的患者。