Suppr超能文献

转录组谱分析鉴定与 C-PCNA 柿果发育后期 PA 生物合成和不溶性相关的基因。

Transcriptomic profiling analysis to identify genes associated with PA biosynthesis and insolubilization in the late stage of fruit development in C-PCNA persimmon.

机构信息

Key Laboratory of Non-Timber Forest Germplasm Enhancement and Utilization of State Administration of Forestry and Grassland, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China.

College of Forestry, Inner Mongolia Agricultural University, Hohhot, 010018, China.

出版信息

Sci Rep. 2022 Nov 9;12(1):19140. doi: 10.1038/s41598-022-23742-4.

Abstract

PA-enhanced content causes astringency in persimmon fruit. PCNA persimmons can lose their astringency naturally and they become edible when still on the tree, which allows for conserves of physical and financial resources. C-PCNA persimmon originates in China. Its deastringency trait primarily depends on decreased PA biosynthesis and PA insolubilization at the late stage of fruit development. Although some genes and transcription factors that may be involved in the deastringency of C-PCNA persimmon have been reported, the expression patterns of these genes during the key deastringency stage are reported less. To investigate the variation in PA contents and the expression patterns of deastringency-related genes during typical C-PCNA persimmon 'Xiaoguo-tianshi' fruit development and ripening, PA content and transcriptional profiling were carried out at five late stages from 70 to 160 DAF. The combinational analysis phenotype, PA content, and DEG enrichment revealed that 120-140 DAF and 140-160 DAF were the critical phases for PA biosynthesis reduction and PA insolubilization, respectively. The expression of PA biosynthesis-associated genes indicated that the downregulation of the ANR gene at 140-160 DAF may be associated with PA biosynthesis and is decreased by inhibiting its precursor cis-flavan-3-ols. We also found that a decrease in acetaldehyde metabolism-associated ALDH genes and an increase in ADH and PDC genes might result in C-PCNA persimmon PA insolubilization. In addition, a few MYB-bHLH-WD40 (MBW) homologous transcription factors in persimmon might play important roles in persimmon PA accumulation. Furthermore, combined coexpression network analysis and phylogenetic analysis of MBW suggested that three putative transcription factors WD40 (evm.TU.contig1.155), MYB (evm.TU.contig8910.486) and bHLH (evm.TU.contig1398.203), might connect and co-regulate both PA biosynthesis and its insolubilization in C-PCNA persimmon. The present study elucidated transcriptional insights into PA biosynthesis and insolubilization during the late development stages based on the C-PCNA D. kaki genome (unpublished). Thus, we focused on PA content variation and the expression patterns of genes involved in PA biosynthesis and insolubilization. Our work has provided additional evidence on previous knowledge and a basis for further exploration of the natural deastringency of C-PCNA persimmon.

摘要

PA 增强的内容会使柿子产生涩味。PCNA 柿子可以在树上自然脱涩,当它们还在树上时就可以食用,这可以节省物力和财力。C-PCNA 柿子原产于中国。其脱涩特性主要取决于果实发育后期 PA 生物合成和 PA 不溶的减少。尽管已经报道了一些可能参与 C-PCNA 柿子脱涩的基因和转录因子,但在关键脱涩阶段这些基因的表达模式报道较少。为了研究典型的 C-PCNA 柿子 '小果甜柿' 果实发育和成熟过程中 PA 含量的变化和脱涩相关基因的表达模式,在 70 至 160 DAF 的 5 个后期进行了 PA 含量和转录谱分析。组合分析表型、PA 含量和 DEG 富集表明,120-140 DAF 和 140-160 DAF 分别是 PA 生物合成减少和 PA 不溶的关键阶段。PA 生物合成相关基因的表达表明,140-160 DAF 时 ANR 基因的下调可能与 PA 生物合成有关,并通过抑制其前体顺式黄烷-3-醇而降低。我们还发现,乙醛代谢相关的 ALDH 基因的减少和 ADH 和 PDC 基因的增加可能导致 C-PCNA 柿子 PA 不溶。此外,柿子中一些 MYB-bHLH-WD40(MBW)同源转录因子可能在柿子 PA 积累中发挥重要作用。此外,通过对 MBW 的共表达网络分析和系统发育分析相结合,表明三个推定的转录因子 WD40(evm.TU.contig1.155)、MYB(evm.TU.contig8910.486)和 bHLH(evm.TU.contig1398.203),可能连接并共同调节 C-PCNA 柿子中 PA 的生物合成及其不溶。本研究基于 C-PCNA D. kaki 基因组(未发表),阐明了 PA 生物合成和不溶在后期发育阶段的转录见解。因此,我们重点研究了 PA 含量的变化以及参与 PA 生物合成和不溶的基因的表达模式。我们的工作为进一步探索 C-PCNA 柿子的天然脱涩提供了更多的证据和基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/300c/9646812/df6795b7d16f/41598_2022_23742_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验