Hernandez Céline, Cancila Gabriele, Ayrault Olivier, Zinovyev Andrei, Martignetti Loredana
Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
Institut Curie, PSL Research University, Paris, France.
Adv Exp Med Biol. 2022;1385:259-279. doi: 10.1007/978-3-031-08356-3_10.
In recent cancer genomics programs, large-scale profiling of microRNAs has been routinely used in order to better understand the role of microRNAs in gene regulation and disease. To support the analysis of such amount of data, scalability of bioinformatics pipelines is increasingly important to handle larger datasets.Here, we describe a scalable implementation of the clustered miRNA Master Regulator Analysis (clustMMRA) pipeline, developed to search for genomic clusters of microRNAs potentially driving cancer molecular subtyping. Genomically clustered microRNAs can be simultaneously expressed to work in a combined manner and jointly regulate cell phenotypes. However, the majority of computational approaches for the identification of microRNA master regulators are typically designed to detect the regulatory effect of a single microRNA.We have applied the clustMMRA pipeline to multiple pediatric tumor datasets, up to a hundred samples in size, demonstrating very satisfying performances of the software on large datasets. Results have highlighted genomic clusters of microRNAs potentially involved in several subgroups of the different pediatric cancers or specifically involved in the phenotype of a subgroup. In particular, we confirmed the cluster of microRNAs at the 14q32 locus to be involved in multiple pediatric cancers, showing its specific downregulation in tumor subgroups with aggressive phenotype.
在最近的癌症基因组学项目中,为了更好地理解微小RNA在基因调控和疾病中的作用,对微小RNA进行大规模分析已成为常规操作。为了支持对如此大量数据的分析,生物信息学管道的可扩展性对于处理更大的数据集变得越来越重要。在此,我们描述了一种可扩展的聚类微小RNA主调控因子分析(clustMMRA)管道的实现,该管道旨在寻找可能驱动癌症分子亚型的微小RNA基因组簇。基因组聚类的微小RNA可以同时表达,以联合方式发挥作用并共同调节细胞表型。然而,大多数用于鉴定微小RNA主调控因子的计算方法通常旨在检测单个微小RNA的调控作用。我们已将clustMMRA管道应用于多个儿科肿瘤数据集,样本量多达一百个,结果表明该软件在大型数据集上具有非常令人满意的性能。结果突出了可能参与不同儿科癌症的几个亚组或特别参与一个亚组表型的微小RNA基因组簇。特别是,我们证实了位于14q32位点的微小RNA簇与多种儿科癌症有关,显示出其在具有侵袭性表型的肿瘤亚组中特异性下调。