Nogales-Cadenas Ruben, Cai Ying, Lin Jhih-Rong, Zhang Quanwei, Zhang Wen, Montagna Cristina, Zhang Zhengdong D
Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
Breast Cancer Res. 2016 Jul 22;18(1):75. doi: 10.1186/s13058-016-0735-z.
MicroRNAs (miRNAs) are small non-coding RNA molecules of about 22 nucleotides which function to silence the expression of their target genes. Numerous studies have shown that miRNAs are not only key regulators in important cellular processes but are also drivers in the development of many diseases, especially cancer. Estrogen receptor positive luminal B is the second most common but the least studied subtype of breast cancer. Only a few studies have examined the expression profiles of miRNAs in luminal B breast cancer, and their regulatory roles in cancer progression have yet to be investigated.
In this study, using polyoma middle T antigen (PyMT) mice, a widely used luminal B breast cancer model, we profiled microRNA (miRNA) expression at four time points that represent different key developmental stages of cancer progression. We considered the expression of both miRNAs and messenger RNAs (mRNAs) at these time points to improve the identification of regulatory targets of miRNAs. By combining gene functional and pathway annotation with miRNA-mRNA interactions, we created a PyMT-specific tripartite miRNA-mRNA-pathway network and identified novel functional regulatory programs (FRPs).
We identified 151 differentially expressed miRNAs with a strict dual nature of either upregulation or downregulation during the whole course of disease progression. Among 82 newly discovered breast-cancer-related miRNAs, 35 can potentially regulate 271 protein-coding genes based on their sequence complementarity and expression profiles. We also identified miRNA-mRNA regulatory modules driving specific cancer-related biological processes.
In this study we profiled the expression of miRNAs during breast cancer progression in the PyMT mouse model. By integrating miRNA and mRNA expression profiles, we identified differentially expressed miRNAs and their target genes involved in several hallmarks of cancer. We applied a novel clustering method to an annotated miRNA-mRNA regulatory network and identified network modules involved in specific cancer-related biological processes.
微小RNA(miRNA)是一类约22个核苷酸的小型非编码RNA分子,其功能是使靶基因的表达沉默。大量研究表明,miRNA不仅是重要细胞过程中的关键调节因子,也是许多疾病尤其是癌症发展的驱动因素。雌激素受体阳性的管腔B型是乳腺癌中第二常见但研究最少的亚型。仅有少数研究检测了管腔B型乳腺癌中miRNA的表达谱,其在癌症进展中的调控作用尚待研究。
在本研究中,我们使用多瘤病毒中间T抗原(PyMT)小鼠(一种广泛应用的管腔B型乳腺癌模型),在代表癌症进展不同关键发育阶段的四个时间点分析了微小RNA(miRNA)的表达情况。我们考虑了这些时间点上miRNA和信使RNA(mRNA)的表达,以改进对miRNA调控靶点的识别。通过将基因功能和通路注释与miRNA-mRNA相互作用相结合,我们构建了一个PyMT特异性的三方miRNA-mRNA-通路网络,并鉴定了新的功能调控程序(FRP)。
我们鉴定出151个差异表达的miRNA,它们在疾病进展的整个过程中具有上调或下调的严格双重性质。在82个新发现的与乳腺癌相关的miRNA中,基于其序列互补性和表达谱,有35个可能调控271个蛋白质编码基因。我们还鉴定了驱动特定癌症相关生物学过程的miRNA-mRNA调控模块。
在本研究中,我们分析了PyMT小鼠模型中乳腺癌进展过程中miRNA的表达。通过整合miRNA和mRNA表达谱,我们鉴定出差异表达的miRNA及其参与癌症多个特征的靶基因。我们将一种新的聚类方法应用于注释的miRNA-mRNA调控网络,鉴定出参与特定癌症相关生物学过程的网络模块。