Materials Science Division, Argonne National Laboratory, Lemont, IL, USA.
Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
Nature. 2022 Dec;612(7938):72-77. doi: 10.1038/s41586-022-05307-7. Epub 2022 Nov 9.
Advancements in many modern technologies rely on the continuous need for materials discovery. However, the design of synthesis routes leading to new and targeted solid-state materials requires understanding of reactivity patterns. Advances in synthesis science are necessary to increase efficiency and accelerate materials discovery. We present a highly effective methodology for the rational discovery of materials using high-temperature solutions or fluxes having tunable solubility. This methodology facilitates product selection by projecting the free-energy landscape into real synthetic variables: temperature and flux ratio. We demonstrate the effectiveness of this technique by synthesizing compounds in the chalcogenide system of A(Ba)-Cu-Q(O) (Q = S or Se; A = Na, K or Rb) using mixed AOH/AX (A = Li, Na, K or Rb; X = Cl or I) fluxes. We present 30 unreported compounds or compositions, including more than ten unique structural types, by systematically varying the temperature and flux ratios without requiring changing the proportions of starting materials. Also, we found that the structural dimensionality of the compounds decreases with increasing reactant solubility and temperature. This methodology serves as an effective general strategy for the rational discovery of inorganic solids.
许多现代技术的进步都依赖于对材料发现的持续需求。然而,设计导致新型和靶向固态材料的合成途径需要了解反应性模式。合成科学的进步对于提高效率和加速材料发现是必要的。我们提出了一种使用具有可调溶解度的高温溶液或熔剂进行材料合理发现的高效方法。该方法通过将自由能景观投射到实际合成变量(温度和熔剂比)上来促进产物选择。我们通过使用混合 AOH/AX(A=Li、Na、K 或 Rb;X=Cl 或 I)熔剂在 A(Ba)-Cu-Q(O)(Q=S 或 Se;A=Na、K 或 Rb)的硫族化物体系中合成化合物证明了该技术的有效性。我们通过系统地改变温度和熔剂比而无需改变起始材料的比例,提出了 30 种未报告的化合物或组成,包括十种以上独特的结构类型。此外,我们发现化合物的结构维度随着反应物溶解度和温度的增加而降低。该方法为无机固体的合理发现提供了一种有效的通用策略。