Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
Biomechanics Section, KU Leuven, Leuven, Belgium.
BMC Biol. 2022 Nov 9;20(1):253. doi: 10.1186/s12915-022-01451-8.
Without the availability of disease-modifying drugs, there is an unmet therapeutic need for osteoarthritic patients. During osteoarthritis, the homeostasis of articular chondrocytes is dysregulated and a phenotypical transition called hypertrophy occurs, leading to cartilage degeneration. Targeting this phenotypic transition has emerged as a potential therapeutic strategy. Chondrocyte phenotype maintenance and switch are controlled by an intricate network of intracellular factors, each influenced by a myriad of feedback mechanisms, making it challenging to intuitively predict treatment outcomes, while in silico modeling can help unravel that complexity. In this study, we aim to develop a virtual articular chondrocyte to guide experiments in order to rationalize the identification of potential drug targets via screening of combination therapies through computational modeling and simulations.
We developed a signal transduction network model using knowledge-based and data-driven (machine learning) modeling technologies. The in silico high-throughput screening of (pairwise) perturbations operated with that network model highlighted conditions potentially affecting the hypertrophic switch. A selection of promising combinations was further tested in a murine cell line and primary human chondrocytes, which notably highlighted a previously unreported synergistic effect between the protein kinase A and the fibroblast growth factor receptor 1.
Here, we provide a virtual articular chondrocyte in the form of a signal transduction interactive knowledge base and of an executable computational model. Our in silico-in vitro strategy opens new routes for developing osteoarthritis targeting therapies by refining the early stages of drug target discovery.
由于缺乏可改变疾病进程的药物,骨关节炎患者存在未满足的治疗需求。在骨关节炎中,关节软骨细胞的内稳态失调,发生表型转化即肥大,导致软骨退化。针对这种表型转化已成为一种潜在的治疗策略。软骨细胞表型的维持和转换受细胞内因素的复杂网络调控,每个因素都受到无数反馈机制的影响,因此难以直观地预测治疗效果,而计算建模可以帮助揭示这种复杂性。在这项研究中,我们旨在开发一种虚拟关节软骨细胞,以通过计算建模和模拟进行组合疗法筛选,指导实验,从而合理化潜在药物靶点的识别。
我们使用基于知识和数据驱动(机器学习)建模技术开发了一个信号转导网络模型。该网络模型进行的高通量(成对)扰动的计算筛选突出了可能影响肥大转化的条件。进一步在鼠细胞系和原代人软骨细胞中测试了一组有前途的组合,其中特别突出了蛋白激酶 A 和成纤维细胞生长因子受体 1 之间以前未报道的协同作用。
在这里,我们提供了一种虚拟关节软骨细胞,其形式为信号转导交互式知识库和可执行的计算模型。我们的计算体外策略通过细化药物靶点发现的早期阶段,为开发针对骨关节炎的靶向治疗方法开辟了新途径。