European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.
Mol Syst Biol. 2020 Feb;16(2):e8664. doi: 10.15252/msb.20188664.
Mechanistic modeling of signaling pathways mediating patient-specific response to therapy can help to unveil resistance mechanisms and improve therapeutic strategies. Yet, creating such models for patients, in particular for solid malignancies, is challenging. A major hurdle to build these models is the limited material available that precludes the generation of large-scale perturbation data. Here, we present an approach that couples ex vivo high-throughput screenings of cancer biopsies using microfluidics with logic-based modeling to generate patient-specific dynamic models of extrinsic and intrinsic apoptosis signaling pathways. We used the resulting models to investigate heterogeneity in pancreatic cancer patients, showing dissimilarities especially in the PI3K-Akt pathway. Variation in model parameters reflected well the different tumor stages. Finally, we used our dynamic models to efficaciously predict new personalized combinatorial treatments. Our results suggest that our combination of microfluidic experiments and mathematical model can be a novel tool toward cancer precision medicine.
介导患者对治疗反应的信号通路的机制建模有助于揭示耐药机制并改善治疗策略。然而,为患者(特别是实体恶性肿瘤患者)创建此类模型具有挑战性。构建这些模型的主要障碍是可用的材料有限,无法生成大规模的扰动数据。在这里,我们提出了一种将使用微流控技术的癌症活检的体外高通量筛选与基于逻辑的建模相结合的方法,以生成外在和内在细胞凋亡信号通路的患者特异性动态模型。我们使用得到的模型来研究胰腺癌患者的异质性,显示出特别是在 PI3K-Akt 通路中的差异。模型参数的变化很好地反映了不同的肿瘤阶段。最后,我们使用我们的动态模型有效地预测了新的个性化组合治疗。我们的研究结果表明,我们的微流控实验和数学模型的组合可以成为癌症精准医学的新工具。