Suppr超能文献

多目标进化算法在流域管理问题中的应用比较。

Comparison of multi-objective evolutionary algorithms applied to watershed management problem.

机构信息

Three-gorges Reservoir Area (Chongqing) Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China.

Three-gorges Reservoir Area (Chongqing) Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China.

出版信息

J Environ Manage. 2022 Dec 15;324:116255. doi: 10.1016/j.jenvman.2022.116255. Epub 2022 Oct 6.

Abstract

Simulation-based optimization (S-O) frameworks are effective in developing cost-effective watershed management strategies, where optimization algorithms have substantial effect on the quality of strategies. Despite the development and improvement of multi-objective evolutionary algorithms (MOEAs) provide more robust alternatives for optimization, they typically have limited applications in real-world decision contexts. In this study, three advanced MOEAs, including NSGA-II, MOEA/D and NSGA-III, were introduced into the S-O framework and applied to a real-world watershed management problem, and their performance and characteristics were quantified through performance metrics. Results show that a higher crossover or mutation probability do not necessarily promote convergence and diversity of solutions, while a larger generation and population size is helpful for MOEAs to find high-quality solutions. Compared to the other two MOEAs, NSGA-II consistently exhibits robust performance in finding solutions with good convergence and high diversity, and provides more options at the same computational cost, while the degenerate Pareto front of the proposed watershed management problem may account for the poor performance of MOEA/D and NSGA-III in terms of diversity. For a 10% TN or TP reduction target, the average cost of the NSGA-II optimized strategies is 32.22% or 47.83% of the commonly used strategies. In addition, this study also discussed the development of resilient watershed management to buffer the impacts of climate change on aquatic system, the incorporation of fuzzy programming into the S-O framework to develop robust watershed management strategies under uncertainty, and the application of machine learning-based surrogate models to reduce computational cost of the S-O framework. These results can contribute to the understanding of MOEAs and provide useful guidance to decision makers.

摘要

基于模拟的优化 (S-O) 框架在制定具有成本效益的流域管理策略方面非常有效,其中优化算法对策略的质量有重大影响。尽管多目标进化算法 (MOEAs) 的发展和改进为优化提供了更强大的选择,但它们在实际决策环境中的应用通常有限。在这项研究中,三种先进的 MOEAs,包括 NSGA-II、MOEA/D 和 NSGA-III,被引入 S-O 框架,并应用于一个真实的流域管理问题,通过性能指标来量化它们的性能和特点。结果表明,更高的交叉或变异概率不一定能促进解的收敛和多样性,而更大的世代和种群大小有助于 MOEAs 找到高质量的解。与其他两种 MOEAs 相比,NSGA-II 在寻找具有良好收敛性和高多样性的解方面表现出稳健的性能,并在相同的计算成本下提供更多的选择,而所提出的流域管理问题的退化 Pareto 前沿可能是 MOEA/D 和 NSGA-III 在多样性方面表现不佳的原因。对于 TN 或 TP 减少 10%的目标,NSGA-II 优化策略的平均成本分别为常用策略的 32.22%或 47.83%。此外,本研究还讨论了开发弹性流域管理以缓冲气候变化对水生系统的影响,将模糊规划纳入 S-O 框架以在不确定条件下制定稳健的流域管理策略,以及应用基于机器学习的替代模型来降低 S-O 框架的计算成本。这些结果有助于理解 MOEAs,并为决策者提供有用的指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验