Suppr超能文献

人工智能通过识别面部表情来理解胎儿大脑活动的波动。

Artificial intelligence to understand fluctuation of fetal brain activity by recognizing facial expressions.

作者信息

Miyagi Yasunari, Hata Toshiyuki, Bouno Saori, Koyanagi Aya, Miyake Takahito

机构信息

Department of Gynecology, Miyake Ofuku Clinic, Okayama City, Okayama Prefecture, Japan.

Medical Data Labo, Okayama City, Okayama Prefecture, Japan.

出版信息

Int J Gynaecol Obstet. 2023 Jun;161(3):877-885. doi: 10.1002/ijgo.14569. Epub 2022 Nov 26.

Abstract

OBJECTIVE

To examine whether artificial intelligence can achieve discoveries regarding fetal brain activity.

METHODS

In this observational study, the authors collected images of fetal faces using a four-dimensional ultrasound technique obtained from singleton pregnancies of outpatients in routine practice at 27 to 37 weeks of gestation between February 1 and December 31, 2021. The authors developed an artificial intelligence classifier to recognize seven facial expressions of fetuses, then applied it to video files of fetal facial images to generate the probabilities, as confidence scores, of each expression category. Discrete Fourier transform and chaotic analysis were used to investigate the scores. Mann-Whitney test, t test, variance test, and one-way analysis of variance were used for statistical analysis.

RESULTS

Facial expression changes were observed in cycles averaging 66 to 73 s. The power spectrum showed that mouthing and neutral expressions were the most prevalent. There was a difference between categories for the spectrum (p = 0.004). Two different states--dense and sparse--of confidence scores were discovered. The correlation dimension was 1.19 ± 0.22 and 1.33 ± 0.27 for dense and sparse, respectively (p = 0.047).

CONCLUSION

This method objectively and quantitatively demonstrated fetal brain activity and may provide insight into how the fetus spends its time in utero.

摘要

目的

研究人工智能是否能够实现关于胎儿大脑活动的发现。

方法

在这项观察性研究中,作者使用四维超声技术收集了2021年2月1日至12月31日期间门诊单胎妊娠孕妇在妊娠27至37周时的胎儿面部图像。作者开发了一种人工智能分类器来识别胎儿的七种面部表情,然后将其应用于胎儿面部图像的视频文件,以生成每个表情类别的概率作为置信度得分。使用离散傅里叶变换和混沌分析来研究这些得分。采用曼-惠特尼检验、t检验、方差检验和单因素方差分析进行统计分析。

结果

观察到面部表情变化的平均周期为66至73秒。功率谱显示张嘴和中性表情最为普遍。频谱在类别之间存在差异(p = 0.004)。发现了置信度得分的两种不同状态——密集和稀疏。密集和稀疏状态下的关联维数分别为1.19±0.22和1.33±0.27(p = 0.047)。

结论

该方法客观、定量地证明了胎儿的大脑活动,并可能为了解胎儿在子宫内的时间利用方式提供见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验