Divasón Jose, Thiemann René
University of La Rioja, Logroño, Spain.
University of Innsbruck, Innsbruck, Austria.
J Autom Reason. 2022;66(4):1065-1095. doi: 10.1007/s10817-022-09631-5. Epub 2022 May 26.
This work presents formal correctness proofs in Isabelle/HOL of algorithms to transform a matrix into Smith normal form, a canonical matrix form, in a general setting: the algorithms are written in an abstract form and parameterized by very few simple operations. We formally show their soundness provided the operations exist and satisfy some conditions, which always hold on Euclidean domains. We also provide a formal proof on some results about the generality of such algorithms as well as the uniqueness of the Smith normal form. Since Isabelle/HOL does not feature dependent types, the development is carried out by switching conveniently between two different existing libraries by means of the lifting and transfer package and the use of local type definitions, a sound extension to HOL.
本文展示了在Isabelle/HOL中对将矩阵转换为史密斯标准型(一种规范矩阵形式)的算法进行的形式正确性证明,该算法适用于一般情况:算法以抽象形式编写,并由极少的简单操作参数化。我们正式证明了只要这些操作存在并满足某些条件(在欧几里得整环上这些条件总是成立),算法就是可靠的。我们还对这类算法的一般性以及史密斯标准型的唯一性的一些结果进行了形式证明。由于Isabelle/HOL不具备依赖类型,因此通过借助提升和转移包以及使用局部类型定义在两个不同的现有库之间方便地切换来进行开发,这是对HOL的合理扩展。