Department of Biomedical Engineering, Washington University, St Louis, MO, USA.
Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA.
Methods Mol Biol. 2023;2598:197-215. doi: 10.1007/978-1-0716-2839-3_15.
Since their discovery in 1993, microRNAs (miRNAs) are now recognized as important epigenetic regulators of many mammalian cellular processes including proliferation, apoptosis, metabolism, and differentiation. These small non-coding RNAs function by interacting with specific regions in the 3'-untranslated region of mRNAs, thereby resulting in mRNA degradation or suppression of translation. Since miRNAs have the ability to target many mRNAs within a given cell type, a number of cellular pathways and networks may be regulated as a result. To study the function of miRNAs, a number of methods can be used to modulate their activity in cells such as synthetic mimics or antagomirs for short-term assays or viral-based approaches for longer-term experiments such as cell differentiation assays. In this chapter, we provide our methodology to constitutively overexpress a desired miRNA during in vitro chondrogenesis of human cartilage progenitor cells (CPCs). Specifically, we describe how we obtain CPCs from human articular cartilage specimens, how we generate and titrate lentivirus engineered to overexpress a precursor miRNA, how we transduce CPCs with lentivirus and differentiate them toward the chondrocyte lineage, and how we extract RNA and measure expression levels of the miRNA of interest during in vitro chondrogenesis. We also provide some data from our laboratory demonstrating that we can achieve and maintain miRNA overexpression for up to 14 days in cartilage pellet cultures. We predict that these lentiviral-based approaches will also be useful to study how miRNA modulation of progenitor cells affects cell differentiation and extracellular matrix production within three-dimensional biomaterial scaffolds.
自 1993 年被发现以来,microRNAs(miRNAs)现已被确认为许多哺乳动物细胞过程的重要表观遗传调节剂,包括增殖、凋亡、代谢和分化。这些小的非编码 RNA 通过与 mRNA 的 3'-非翻译区的特定区域相互作用而发挥作用,从而导致 mRNA 降解或翻译抑制。由于 miRNAs 能够靶向给定细胞类型内的许多 mRNA,因此可能会调节许多细胞途径和网络。为了研究 miRNAs 的功能,可以使用许多方法来调节它们在细胞中的活性,例如用于短期测定的合成模拟物或反义寡核苷酸,或用于长期实验(如细胞分化测定)的基于病毒的方法。在本章中,我们提供了在体外人软骨祖细胞(CPCs)的软骨生成过程中持续过表达所需 miRNA 的方法。具体来说,我们描述了如何从人关节软骨标本中获得 CPCs,如何生成和滴定经工程改造以过表达前体 miRNA 的慢病毒,如何将慢病毒转导到 CPCs 中并将其分化为软骨细胞谱系,以及如何在体外软骨生成过程中提取 RNA 并测量感兴趣的 miRNA 的表达水平。我们还提供了一些来自我们实验室的数据,表明我们可以在软骨球培养物中实现并维持 miRNA 的过表达长达 14 天。我们预测,这些基于慢病毒的方法也将有助于研究 miRNA 对祖细胞的调节如何影响三维生物材料支架内的细胞分化和细胞外基质产生。