Suppr超能文献

荧光碳纳米材料作为食品分析传感器的潜力。

Potentialities of fluorescent carbon nanomaterials as sensor for food analysis.

机构信息

Department of Zoology, The University of Burdwan Golapbag, Bardhaman, West Bengal, India.

Department of Chemistry, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.

出版信息

Luminescence. 2023 Jul;38(7):1047-1063. doi: 10.1002/bio.4406. Epub 2022 Nov 27.

Abstract

Food safety and quality are among the most significant and prevalent research areas worldwide. The fabrication of appropriate technical procedures or devices for the recognition of hazardous features in foods is essential to safeguard food materials. In the recent era, developing high-performance sensors based on carbon nanomaterial for food safety investigation has made noteworthy progress. Hence this review briefly highlights the different detection approaches (colorimetric sensor, fluorescence sensor, surface-enhanced Raman scattering, surface plasmon resonance, chemiluminescence, and electroluminescence), functional carbon nanomaterials with various dimensions (quantum dots, graphene quantum dots) and detection mechanisms. Further, this review emphasizes the assimilation of carbon nanomaterials with optical sensors to identify multiple contaminants in food products. The insights of carbon-based nanomaterials optical sensors for pesticides and insecticides, toxic metals, antibiotics, microorganisms, and mycotoxins detection are described in detail. Finally, the opportunities and future perspectives of nanomaterials-based optical analytical approaches for detecting various food contaminants are discussed.

摘要

食品安全和质量是全球最重要和最普遍的研究领域之一。为了保护食品材料,制造用于识别食品中危险特征的适当技术程序或设备是至关重要的。在最近的时代,基于碳纳米材料的用于食品安全研究的高性能传感器已经取得了显著的进展。因此,本文简要强调了不同的检测方法(比色传感器、荧光传感器、表面增强拉曼散射、表面等离子体共振、化学发光和电致发光)、具有不同维度的功能碳纳米材料(量子点、石墨烯量子点)和检测机制。此外,本文强调了将碳纳米材料与光学传感器结合,以识别食品产品中的多种污染物。详细描述了基于碳的纳米材料光学传感器用于检测农药和杀虫剂、有毒金属、抗生素、微生物和霉菌毒素的见解。最后,讨论了基于纳米材料的光学分析方法用于检测各种食品污染物的机会和未来展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验