Suppr超能文献

青少年互联网用户成瘾症状网络:网络分析。

Addiction Symptom Network of Young Internet Users: Network Analysis.

机构信息

School of Rehabilitation, Jiangsu Vocational College of Medicine, Yancheng, China.

College of Teacher Education, Zhejiang Normal University, Jinhua, China.

出版信息

J Med Internet Res. 2022 Nov 10;24(11):e38984. doi: 10.2196/38984.

Abstract

BACKGROUND

An increasing number of people are becoming addicted to the internet as a result of overuse. The Internet Addiction Test (IAT) is a popular tool for evaluating internet use behaviors. The interaction between different symptoms and the relationship between IAT and clinical diagnostic criteria are not well understood.

OBJECTIVE

This study aimed to explore the core symptoms of internet addiction (IA) and the correlation between different symptoms of the IA symptom network. Network analysis was also conducted to explore the association between the IAT scale and the Diagnostic and Statistical Manual of Mental Disorders-5th edition (DSM-5) criteria for IA.

METHODS

We recruited 4480 internet users (aged 14-24 years), and they completed the IAT. The final analysis included 63.50% (2845/4480) of the participants after screening the submitted questionnaires. Participants were classified into IA group and non-IA (NIA) group. By using partial correlation with Lasso regularization networks, we identified the core symptoms of IA in each group and compared the group differences in network properties (strength, closeness, and betweenness). Then, we analyzed the symptom networks of the DSM-5 diagnostic criteria and IAT scale for IA.

RESULTS

A total of 12.47% (355/2845) of the patients were in the IA group and 87.52% (2490/2845) of the patients were in the NIA group, and both groups were evaluated for the following nodes: IAT_06 (school work suffers; strength=0.511), IAT_08 (job performance suffers; strength=0.531), IAT_15 (fantasize about being on the web; strength=0.474), IAT_17 (fail to stop being on the web; strength=0.526), and IAT_12 (fear about boredom if offline; strength=0.502). The IA groups had a stronger edge between IAT_09 (defensive or secretive about being on the web) and IAT_18 (hidden web time) than the NIA groups. The items in DSM-5 had a strong association with IAT_12 (weight=-0.066), IAT_15 (weight=-0.081), IAT_17 (weight=-0.106), IAT_09 (weight=-0.198), and IAT_18 (weight=-0.052).

CONCLUSIONS

The internet use symptom network of the IA group is significantly different from that of the NIA group. Nodes IAT_06 (school work affected) and IAT_08 (work performance affected) are the resulting symptoms affected by other symptoms, whereas nodes IAT_12 (fear about boredom if offline), IAT_17 (inability to stop being on the web), and IAT_15 (fantasize about being on the web) are key symptoms that activate other symptoms of IA and are strongly linked to the inability to control the intention to play games in the DSM-5.

摘要

背景

由于过度使用,越来越多的人沉迷于互联网。互联网成瘾测试(IAT)是评估互联网使用行为的常用工具。不同症状之间的相互作用以及 IAT 与《精神障碍诊断与统计手册》第 5 版(DSM-5)中网络成瘾诊断标准之间的关系尚未得到很好的理解。

目的

本研究旨在探讨网络成瘾(IA)的核心症状以及 IA 症状网络中不同症状之间的关系。还进行了网络分析,以探讨 IAT 量表与 DSM-5 中 IA 诊断标准之间的关联。

方法

我们招募了 4480 名互联网用户(年龄 14-24 岁),并让他们完成了 IAT。在筛选提交的问卷后,最终分析包括 4480 名参与者中的 63.50%(2845/4480)。参与者被分为 IA 组和非 IA(NIA)组。通过使用带有 Lasso 正则化网络的部分相关分析,我们确定了每组中 IA 的核心症状,并比较了网络属性(强度、紧密性和中间性)的组间差异。然后,我们分析了 DSM-5 诊断标准和 IAT 量表中与 IA 相关的症状网络。

结果

共有 12.47%(355/2845)的患者为 IA 组,87.52%(2490/2845)的患者为 NIA 组,两组均评估了以下节点:IAT_06(学业受损;强度=0.511)、IAT_08(工作表现受损;强度=0.531)、IAT_15(幻想上网;强度=0.474)、IAT_17(无法停止上网;强度=0.526)和 IAT_12(离线时害怕无聊;强度=0.502)。IA 组中 IAT_09(上网行为防御或隐秘)和 IAT_18(隐藏上网时间)之间的边缘比 NIA 组更强。DSM-5 中的项目与 IAT_12(权重=-0.066)、IAT_15(权重=-0.081)、IAT_17(权重=-0.106)、IAT_09(权重=-0.198)和 IAT_18(权重=-0.052)之间存在很强的关联。

结论

IA 组的互联网使用症状网络与 NIA 组有明显的差异。节点 IAT_06(学业受影响)和 IAT_08(工作表现受影响)是受其他症状影响的结果症状,而节点 IAT_12(害怕无聊)、IAT_17(无法停止上网)和 IAT_15(幻想上网)是激活 IA 其他症状的关键症状,与 DSM-5 中无法控制游戏意图的能力密切相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7825/9693725/5ea281edf64e/jmir_v24i11e38984_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验