Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053 Regensburg, Germany.
Institut Laue-Langevin - The European Neutron Source, 71 avenue des Martyrs, F-38042 Grenoble, France; ESRF - The European Synchrotron, 71 avenue des Martyrs, F-38043 Grenoble, France.
J Colloid Interface Sci. 2023 Jan 15;630(Pt B):762-775. doi: 10.1016/j.jcis.2022.10.138. Epub 2022 Nov 7.
The monoammonium salt of glycyrrhizic acid (AGA) is known to form fibrillar hydrogels and few studies regarding self-assembly of AGA have been published. Yet, the understanding of the fibrillar microstructures and the gelation remains vague. Thus, we attempt to achieve a deeper understanding of the microstructures and the gelation process of binary solutions of AGA in water. Further, we examine the effect of ethanol on the microstructures to pave the way for potential enhancement of drug loading in AGA hydrogels.
A partial room temperature phase map of the ternary system AGA/ethanol/water was recorded. Small-angle X-ray and neutron scattering experiments were performed over wide ranges of compositions in both binary AGA/water and ternary AGA/ethanol/water mixtures to get access to the micro-structuring.
Binary aqueous solutions of AGA form birefringent gels consisting of a network of long helical fibrils. 'Infinitely' long negatively charged fibrils are in equilibrium with shorter fibrils (≈25 nm), both of which have a diameter of about 3 nm and are made of around 30 stacks of AGA per helical period (≈9nm), with each stack consisting of two AGA molecules. The interaxial distance (order of magnitude ≈20 nm) varies with an almost two-dimensional swelling law. Addition of ethanol reduces electrostatic repulsion and favors the formation of fibrillar end caps, reducing the average length of shorter fibrils, as well as the formation of small, swollen aggregates. While the gel network built by the long fibrils is resilient to a significant amount of ethanol, all fibrils are finally dissolved into small aggregates above a certain threshold concentration of ethanol (≈30 wt%).
甘草酸的单铵盐(AGA)已知形成纤维状水凝胶,并且已经发表了一些关于 AGA 自组装的研究。然而,对于 AGA 的纤维状微观结构和胶凝的理解仍然模糊不清。因此,我们试图更深入地了解 AGA 在水中的二元溶液的微观结构和胶凝过程。此外,我们研究了乙醇对微观结构的影响,为在 AGA 水凝胶中潜在地增强药物负载铺平道路。
记录了 AGA/乙醇/水三元体系的部分室温相图。在 AGA/水和 AGA/乙醇/水的二元混合物中进行了小角 X 射线和中子散射实验,在很宽的组成范围内进行,以获得微结构。
AGA 的二元水溶液形成双折射凝胶,由长螺旋纤维的网络组成。“无限”长的带负电荷的纤维与较短的纤维(≈25nm)处于平衡状态,两者的直径约为 3nm,每个螺旋周期(≈9nm)由大约 30 个 AGA 堆叠组成,每个堆叠由两个 AGA 分子组成。轴间距(数量级≈20nm)随近乎二维的溶胀规律而变化。添加乙醇会降低静电排斥作用,并有利于形成纤维状端帽,从而缩短较短纤维的平均长度,并减少小的、肿胀的聚集体的形成。虽然由长纤维形成的凝胶网络具有很大的弹性,但所有纤维最终都在一定的乙醇浓度阈值(约 30wt%)以上溶解成小的聚集体。