Suppr超能文献

基于生成对抗网络的数据增强在基于 CNN 的新冠病毒检测中的应用。

Generative adversarial network based data augmentation for CNN based detection of Covid-19.

机构信息

Institute of General Mechanics, RWTH Aachen University, Aachen, Germany.

出版信息

Sci Rep. 2022 Nov 10;12(1):19186. doi: 10.1038/s41598-022-23692-x.

Abstract

Covid-19 has been a global concern since 2019, crippling the world economy and health. Biological diagnostic tools have since been developed to identify the virus from bodily fluids and since the virus causes pneumonia, which results in lung inflammation, the presence of the virus can also be detected using medical imaging by expert radiologists. The success of each diagnostic method is measured by the hit rate for identifying Covid infections. However, the access for people to each diagnosis tool can be limited, depending on the geographic region and, since Covid treatment denotes a race against time, the diagnosis duration plays an important role. Hospitals with X-ray opportunities are widely distributed all over the world, so a method investigating lung X-ray images for possible Covid-19 infections would offer itself. Promising results have been achieved in the literature in automatically detecting the virus using medical images like CT scans and X-rays using supervised artificial neural network algorithms. One of the major drawbacks of supervised learning models is that they require enormous amounts of data to train, and generalize on new data. In this study, we develop a Swish activated, Instance and Batch normalized Residual U-Net GAN with dense blocks and skip connections to create synthetic and augmented data for training. The proposed GAN architecture, due to the presence of instance normalization and swish activation, can deal with the randomness of luminosity, that arises due to different sources of X-ray images better than the classical architecture and generate realistic-looking synthetic data. Also, the radiology equipment is not generally computationally efficient. They cannot efficiently run state-of-the-art deep neural networks such as DenseNet and ResNet effectively. Hence, we propose a novel CNN architecture that is 40% lighter and more accurate than state-of-the-art CNN networks. Multi-class classification of the three classes of chest X-rays (CXR), ie Covid-19, healthy and Pneumonia, is performed using the proposed model which had an extremely high test accuracy of 99.2% which has not been achieved in any previous studies in the literature. Based on the mentioned criteria for developing Corona infection diagnosis, in the present study, an Artificial Intelligence based method is proposed, resulting in a rapid diagnostic tool for Covid infections based on generative adversarial and convolutional neural networks. The benefit will be a high accuracy of lung infection identification with 99% accuracy. This could lead to a support tool that helps in rapid diagnosis, and an accessible Covid identification method using CXR images.

摘要

自 2019 年以来,Covid-19 一直是全球关注的焦点,严重破坏了世界经济和健康。此后,已经开发出生物诊断工具来从体液中识别病毒,由于病毒会引起肺炎,导致肺部炎症,因此也可以通过专家放射科医生使用医学成像来检测病毒的存在。每种诊断方法的成功都通过识别 Covid 感染的命中率来衡量。然而,由于地理位置的限制,人们获得每种诊断工具的机会可能会受到限制,而且由于 Covid 治疗是一场与时间的赛跑,因此诊断时间起着重要作用。全世界都广泛分布着有 X 光机会的医院,因此,研究肺部 X 光图像是否可能感染 Covid-19 的方法应运而生。使用 CT 扫描和 X 射线等医学图像自动检测病毒的方法在文献中已经取得了有希望的结果,这些方法使用监督人工神经网络算法。监督学习模型的主要缺点之一是它们需要大量数据进行训练,并在新数据上进行泛化。在这项研究中,我们开发了一种带有 Swish 激活、实例和批量归一化残差 U-Net GAN 的密集块和跳过连接,用于为训练创建合成和增强数据。由于存在实例归一化和 Swish 激活,所提出的 GAN 架构可以更好地处理由于 X 射线图像的不同来源而产生的随机性,与经典架构相比,该架构可以生成逼真的合成数据。此外,放射学设备通常不是计算效率高的。它们不能有效地运行 DenseNet 和 ResNet 等最先进的深度神经网络。因此,我们提出了一种新的 CNN 架构,比最先进的 CNN 网络轻 40%,精度更高。使用所提出的模型对三类胸部 X 射线(CXR),即 Covid-19、健康和肺炎进行了多类分类,该模型的测试准确率极高,达到 99.2%,这在文献中的任何以前的研究中都没有达到。基于开发 Corona 感染诊断的上述标准,在本研究中,提出了一种基于人工智能的方法,基于生成对抗和卷积神经网络,为 Covid 感染快速诊断提供了一种快速诊断工具。其优势是具有 99%的准确率的肺部感染识别的高准确性。这可能导致一种支持工具,可以帮助快速诊断,并提供一种使用 CXR 图像进行的可访问的 Covid 识别方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验