Suppr超能文献

RANDGAN:用于胸部 X 光 COVID-19 检测的随机生成对抗网络。

RANDGAN: Randomized generative adversarial network for detection of COVID-19 in chest X-ray.

机构信息

Institute of Medical Science, University of Toronto, Toronto, ON, Canada.

Department of Diagnostic Imaging, Neurosciences and Mental Health, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.

出版信息

Sci Rep. 2021 Apr 21;11(1):8602. doi: 10.1038/s41598-021-87994-2.

Abstract

COVID-19 spread across the globe at an immense rate and has left healthcare systems incapacitated to diagnose and test patients at the needed rate. Studies have shown promising results for detection of COVID-19 from viral bacterial pneumonia in chest X-rays. Automation of COVID-19 testing using medical images can speed up the testing process of patients where health care systems lack sufficient numbers of the reverse-transcription polymerase chain reaction tests. Supervised deep learning models such as convolutional neural networks need enough labeled data for all classes to correctly learn the task of detection. Gathering labeled data is a cumbersome task and requires time and resources which could further strain health care systems and radiologists at the early stages of a pandemic such as COVID-19. In this study, we propose a randomized generative adversarial network (RANDGAN) that detects images of an unknown class (COVID-19) from known and labelled classes (Normal and Viral Pneumonia) without the need for labels and training data from the unknown class of images (COVID-19). We used the largest publicly available COVID-19 chest X-ray dataset, COVIDx, which is comprised of Normal, Pneumonia, and COVID-19 images from multiple public databases. In this work, we use transfer learning to segment the lungs in the COVIDx dataset. Next, we show why segmentation of the region of interest (lungs) is vital to correctly learn the task of classification, specifically in datasets that contain images from different resources as it is the case for the COVIDx dataset. Finally, we show improved results in detection of COVID-19 cases using our generative model (RANDGAN) compared to conventional generative adversarial networks for anomaly detection in medical images, improving the area under the ROC curve from 0.71 to 0.77.

摘要

COVID-19 在全球范围内迅速传播,使医疗系统无法以所需的速度诊断和检测患者。研究表明,在胸部 X 光片中检测 COVID-19 从病毒性细菌性肺炎的结果很有希望。使用医学图像对 COVID-19 进行自动化检测可以加快医疗系统缺乏足够数量的逆转录聚合酶链反应检测的患者的检测过程。监督深度学习模型(如卷积神经网络)需要足够的标记数据来对所有类别进行正确学习检测任务。收集标记数据是一项繁琐的任务,需要时间和资源,这可能会进一步给医疗系统和放射科医生在 COVID-19 等大流行的早期阶段带来压力。在这项研究中,我们提出了一种随机生成对抗网络(RANDGAN),该网络可以从已知和标记的类别(正常和病毒性肺炎)中检测未知类别的图像(COVID-19),而无需未知类别的图像(COVID-19)的标签和训练数据。我们使用了最大的公开可用的 COVID-19 胸部 X 射线数据集 COVIDx,它由来自多个公共数据库的正常、肺炎和 COVID-19 图像组成。在这项工作中,我们使用迁移学习来分割 COVIDx 数据集的肺部。接下来,我们展示了为什么分割感兴趣区域(肺部)对于正确学习分类任务至关重要,特别是在包含来自不同资源的图像的数据集,因为 COVIDx 数据集就是这种情况。最后,我们展示了使用我们的生成模型(RANDGAN)在检测 COVID-19 病例方面的改进结果,与用于医学图像异常检测的常规生成对抗网络相比,ROC 曲线下的面积从 0.71 提高到 0.77。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99b4/8060427/77e0d1fe6cbf/41598_2021_87994_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验