Suppr超能文献

一种新型硫驱动的自养反硝化与生物阴极耦合系统,用于生物电能生成和地下水修复。

A novel sulfur-driven autotrophic denitrification coupled with bio-cathode system for bioelectricity generation and groundwater remediation.

机构信息

School of Mechanical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China E-mail:

School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, Anhui Province 230011, China.

出版信息

Water Sci Technol. 2022 Sep;86(5):979-991. doi: 10.2166/wst.2022.216.

Abstract

This study explored the feasibility of treating wastewater using sulfur-driven autotrophic denitrification (SAD) coupled with the bio-cathode of microbial fuel cell (MFC), focusing on simultaneous bioelectricity generation, denitrification, and desulphurization. A maximum output voltage of 360 mV was obtained with a power generation cycle of 25 h when simulated wastewater with 100.0 mg/L of each NO-N and S-S was employed as the influent in the SAD-BMFC. Compared with solo SAD or MFC, SAD-BMFC obtained a higher NO-N removal rate (E = 87.7%, E = 100%), and less NO-N accumulation. S-S of the influent was almost completely removed, oxidized to S-S (88.6-90.2 mg/L) and SO-S (9.8-11.4 mg/L). The reaction system achieved self-balance of acidity-alkalinity (pH 7.05-7.35). The SAD process was the main pathway for NO-N removal (80.2%) and a smaller proportion of electrons came from the bio-cathode. This study effectively combined SAD with a bio-cathode system for simultaneous energy harvest and bio-enhanced remediation of groundwater contaminated by both NO-N and S-S.

摘要

本研究探索了利用硫驱动自养反硝化(SAD)与微生物燃料电池(MFC)的生物阴极相结合处理废水的可行性,重点是同时进行生物电能生成、反硝化和脱硫。当以浓度均为 100.0mg/L 的 NO-N 和 S-S 的模拟废水作为 SAD-BMFC 的进水时,获得了最大输出电压为 360 mV 的发电循环 25 h。与单独的 SAD 或 MFC 相比,SAD-BMFC 获得了更高的 NO-N 去除率(E = 87.7%,E = 100%)和更少的 NO-N 积累。进水的 S-S 几乎被完全去除,氧化为 S-S(88.6-90.2mg/L)和 SO-S(9.8-11.4mg/L)。反应系统实现了酸碱性的自平衡(pH 7.05-7.35)。SAD 过程是去除 NO-N 的主要途径(80.2%),并且来自生物阴极的电子比例较小。本研究有效地将 SAD 与生物阴极系统结合,用于同时从同时受到 NO-N 和 S-S 污染的地下水进行能源回收和生物增强修复。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验