Salvat-Leal Inmaculada, Cortés-Gómez Adriana A, Romero Diego, Girondot Marc
Toxicology Area, Faculty of Veterinary Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Espinardo, 30100 Murcia, Spain.
Laboratory Ecologie Systématique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91190 Gif-sur-Yvette, France.
Animals (Basel). 2022 Oct 25;12(21):2919. doi: 10.3390/ani12212919.
One recurring difficulty in ecotoxicological studies is that a substantial portion of concentrations are below the limits of detection established by analytical laboratories. This results in censored distributions in which concentrations of some samples are only known to be below a threshold. The currently available methods have several limitations because they cannot be used with complex situations (e.g., different lower and upper limits in the same dataset, mixture of distributions, truncation and censoring in a single dataset). We propose a versatile method to fit the most diverse situations using conditional likelihood and Bayesian statistics. We test the method with a fictive dataset to ensure its correct description of a known situation. Then we apply the method to a dataset comprising 25 element concentrations analyzed in the blood of nesting marine turtles. We confirm previous findings using this dataset, and we also detect an unexpected new relationship between mortality and strontium concentration.
生态毒理学研究中一个反复出现的难题是,相当一部分浓度低于分析实验室设定的检测限。这导致出现删失分布,即某些样本的浓度仅已知低于某个阈值。目前可用的方法存在若干局限性,因为它们不能用于复杂情况(例如,同一数据集中不同的下限和上限、分布混合、单个数据集中的截断和删失)。我们提出一种通用方法,利用条件似然和贝叶斯统计来拟合最多样化的情况。我们用一个虚拟数据集测试该方法,以确保其对已知情况的正确描述。然后我们将该方法应用于一个包含在筑巢海龟血液中分析的25种元素浓度的数据集。我们使用这个数据集证实了先前的发现,并且还检测到死亡率与锶浓度之间一种意外的新关系。