Suppr超能文献

使用μCT对纯种赛马灾难性近籽骨骨折进行的影像组学建模

Radiomics Modeling of Catastrophic Proximal Sesamoid Bone Fractures in Thoroughbred Racehorses Using μCT.

作者信息

Basran Parminder S, McDonough Sean, Palmer Scott, Reesink Heidi L

机构信息

Clinical Sciences, Cornell University, Ithaca, NY 14853, USA.

Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.

出版信息

Animals (Basel). 2022 Nov 4;12(21):3033. doi: 10.3390/ani12213033.

Abstract

Proximal sesamoid bone (PSB) fractures are the most common musculoskeletal injury in race-horses. X-ray CT imaging can detect expressed radiological features in horses that experienced catastrophic fractures. Our objective was to assess whether expressed radiomic features in the PSBs of 50 horses can be used to develop machine learning models for predicting PSB fractures. The μCTs of intact contralateral PSBs from 50 horses, 30 of which suffered catastrophic fractures, and 20 controls were studied. From the 129 intact μCT images of PSBs, 102 radiomic features were computed using a variety of voxel resampling dimensions. Decision Trees and Wrapper methods were used to identify the 20 top expressed features, and six machine learning algorithms were developed to model the risk of fracture. The accuracy of all machine learning models ranged from 0.643 to 0.903 with an average of 0.754. On average, Support Vector Machine, Random Forest (RUS Boost), and Log-regression models had higher performance than K-means Nearest Neighbor, Neural Network, and Random Forest (Bagged Trees) models. Model accuracy peaked at 0.5 mm and decreased substantially when the resampling resolution was greater than or equal to 1 mm. We find that, for this in vitro dataset, it is possible to differentiate between unfractured PSBs from case and control horses using μCT images. It may be possible to extend these findings to the assessment of fracture risk in standing horses.

摘要

近节籽骨(PSB)骨折是赛马中最常见的肌肉骨骼损伤。X射线CT成像可以检测出经历灾难性骨折的马匹中明显的放射学特征。我们的目的是评估50匹马的PSB中明显的放射组学特征是否可用于开发预测PSB骨折的机器学习模型。研究了50匹马的完整对侧PSB的μCT图像,其中30匹马遭受了灾难性骨折,20匹为对照。从129张完整的PSB的μCT图像中,使用各种体素重采样尺寸计算了102个放射组学特征。使用决策树和包装器方法识别出20个最明显的特征,并开发了六种机器学习算法来模拟骨折风险。所有机器学习模型的准确率在0.643至0.903之间,平均为0.754。平均而言,支持向量机、随机森林(RUS Boost)和逻辑回归模型的性能高于K均值最近邻、神经网络和随机森林(袋装树)模型。模型准确率在0.5毫米时达到峰值,当重采样分辨率大于或等于1毫米时显著下降。我们发现,对于这个体外数据集,可以使用μCT图像区分病例组和对照组马匹未骨折的PSB。有可能将这些发现扩展到站立马匹骨折风险的评估中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21a7/9658779/5849a8065f55/animals-12-03033-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验