Cheng Tianhao, Wang Buhong, Wang Zhen, Cao Kunrui, Dong Runze, Weng Jiang
School of Information and Navigation, Air Force Engineering University, Xi'an 710077, China.
School of Information Engineer, Xijing University, Xi'an 710123, China.
Entropy (Basel). 2022 Nov 4;24(11):1605. doi: 10.3390/e24111605.
This paper studies the intelligent reflecting surface (IRS) assisted secure transmission in unmanned aerial vehicle (UAV) communication systems, where the UAV base station, the legitimate receiver, and the malicious eavesdropper in the system are all equipped with multiple antennas. By deploying an IRS on the facade of a building, the UAV base station can be assisted to realize the secure transmission in this multiple-input multiple-output (MIMO) system. In order to maximize the secrecy rate (SR), the transmit precoding (TPC) matrix, artificial noise (AN) matrix, IRS phase shift matrix, and UAV position are jointly optimized subject to the constraints of transmit power limit, unit modulus of IRS phase shift, and maximum moving distance of UAV. Since the problem is non-convex, an alternating optimization (AO) algorithm is proposed to solve it. Specifically, the TPC matrix and AN covariance matrix are derived by the Lagrange dual method. The alternating direction method of multipliers (ADMM), majorization-minimization (MM), and Riemannian manifold gradient (RCG) algorithms are presented, respectively, to solve the IRS phase shift matrix, and then the performance of the three algorithms is compared. Based on the proportional integral (PI) control theory, a secrecy rate gradient (SRG) algorithm is proposed to iteratively search for the UAV position by following the direction of the secrecy rate gradient. The theoretic analysis and simulation results show that our proposed AO algorithm has a good convergence performance and can increase the SR by 40.5% compared with the method without IRS assistance.
本文研究了智能反射面(IRS)辅助的无人机(UAV)通信系统中的安全传输,该系统中的无人机基站、合法接收机和恶意窃听者均配备了多根天线。通过在建筑物立面上部署IRS,可以辅助无人机基站在该多输入多输出(MIMO)系统中实现安全传输。为了最大化保密率(SR),在发射功率限制、IRS相移的单位模以及无人机的最大移动距离等约束条件下,对发射预编码(TPC)矩阵、人工噪声(AN)矩阵、IRS相移矩阵和无人机位置进行联合优化。由于该问题是非凸的,提出了一种交替优化(AO)算法来解决它。具体而言,通过拉格朗日对偶方法推导TPC矩阵和AN协方差矩阵。分别提出了乘子交替方向法(ADMM)、逐次逼近法(MM)和黎曼流形梯度(RCG)算法来求解IRS相移矩阵,然后比较这三种算法的性能。基于比例积分(PI)控制理论,提出了一种保密率梯度(SRG)算法,通过沿着保密率梯度方向迭代搜索无人机位置。理论分析和仿真结果表明,我们提出的AO算法具有良好的收敛性能,与无IRS辅助的方法相比,可将SR提高40.5%。