Suppr超能文献

DeepNup:使用深度神经网络从 DNA 序列预测核小体定位。

DeepNup: Prediction of Nucleosome Positioning from DNA Sequences Using Deep Neural Network.

机构信息

School of Computer Science and Technology, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China.

Key Lab for Information Processing Technologies, Soochow University, Suzhou Ganjiang East Streat 333, Suzhou 215006, China.

出版信息

Genes (Basel). 2022 Oct 30;13(11):1983. doi: 10.3390/genes13111983.

Abstract

Nucleosome positioning is involved in diverse cellular biological processes by regulating the accessibility of DNA sequences to DNA-binding proteins and plays a vital role. Previous studies have manifested that the intrinsic preference of nucleosomes for DNA sequences may play a dominant role in nucleosome positioning. As a consequence, it is nontrivial to develop computational methods only based on DNA sequence information to accurately identify nucleosome positioning, and thus intend to verify the contribution of DNA sequences responsible for nucleosome positioning. In this work, we propose a new deep learning-based method, named DeepNup, which enables us to improve the prediction of nucleosome positioning only from DNA sequences. Specifically, we first use a hybrid feature encoding scheme that combines One-hot encoding and Trinucleotide composition encoding to encode raw DNA sequences; afterwards, we employ multiscale convolutional neural network modules that consist of two parallel convolution kernels with different sizes and gated recurrent units to effectively learn the local and global correlation feature representations; lastly, we use a fully connected layer and a sigmoid unit serving as a classifier to integrate these learned high-order feature representations and generate the final prediction outcomes. By comparing the experimental evaluation metrics on two benchmark nucleosome positioning datasets, DeepNup achieves a better performance for nucleosome positioning prediction than that of several state-of-the-art methods. These results demonstrate that DeepNup is a powerful deep learning-based tool that enables one to accurately identify potential nucleosome sequences.

摘要

核小体定位通过调节 DNA 序列与 DNA 结合蛋白的可及性,参与多种细胞生物学过程,起着至关重要的作用。先前的研究表明,核小体对 DNA 序列的固有偏好可能在核小体定位中起主导作用。因此,仅基于 DNA 序列信息开发能够准确识别核小体定位的计算方法并非易事,因此旨在验证负责核小体定位的 DNA 序列的贡献。在这项工作中,我们提出了一种新的基于深度学习的方法,名为 DeepNup,它使我们能够仅从 DNA 序列改进核小体定位的预测。具体来说,我们首先使用混合特征编码方案,该方案结合了 One-hot 编码和三核苷酸组成编码来对原始 DNA 序列进行编码;然后,我们使用多尺度卷积神经网络模块,该模块由两个具有不同大小的并行卷积核和门控循环单元组成,以有效地学习局部和全局相关特征表示;最后,我们使用全连接层和 sigmoid 单元作为分类器,将这些学习到的高阶特征表示集成并生成最终的预测结果。通过在两个基准核小体定位数据集上比较实验评估指标,DeepNup 在核小体定位预测方面的性能优于几种最先进的方法。这些结果表明,DeepNup 是一种强大的基于深度学习的工具,能够准确识别潜在的核小体序列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db2e/9689664/156039fac132/genes-13-01983-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验