文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习分类模型预测 2 型糖尿病的准确性:系统调查和荟萃分析方法。

Accuracy of Machine Learning Classification Models for the Prediction of Type 2 Diabetes Mellitus: A Systematic Survey and Meta-Analysis Approach.

机构信息

Department of Computer Science and Information Technology, Sol Plaatje University, Kimberley 8300, South Africa.

Biostatistics Unit, Discipline of Public Health Medicine, School of Nursing & Public Health, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.

出版信息

Int J Environ Res Public Health. 2022 Nov 1;19(21):14280. doi: 10.3390/ijerph192114280.


DOI:10.3390/ijerph192114280
PMID:36361161
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9655196/
Abstract

Soft-computing and statistical learning models have gained substantial momentum in predicting type 2 diabetes mellitus (T2DM) disease. This paper reviews recent soft-computing and statistical learning models in T2DM using a meta-analysis approach. We searched for papers using soft-computing and statistical learning models focused on T2DM published between 2010 and 2021 on three different search engines. Of 1215 studies identified, 34 with 136952 patients met our inclusion criteria. The pooled algorithm's performance was able to predict T2DM with an overall accuracy of 0.86 (95% confidence interval [CI] of [0.82, 0.89]). The classification of diabetes prediction was significantly greater in models with a screening and diagnosis (pooled proportion [95% CI] = 0.91 [0.74, 0.97]) when compared to models with nephropathy (pooled proportion = 0.48 [0.76, 0.89] to 0.88 [0.83, 0.91]). For the prediction of T2DM, the decision trees (DT) models had a pooled accuracy of 0.88 [95% CI: 0.82, 0.92], and the neural network (NN) models had a pooled accuracy of 0.85 [95% CI: 0.79, 0.89]. Meta-regression did not provide any statistically significant findings for the heterogeneous accuracy in studies with different diabetes predictions, sample sizes, and impact factors. Additionally, ML models showed high accuracy for the prediction of T2DM. The predictive accuracy of ML algorithms in T2DM is promising, mainly through DT and NN models. However, there is heterogeneity among ML models. We compared the results and models and concluded that this evidence might help clinicians interpret data and implement optimum models for their dataset for T2DM prediction.

摘要

软计算和统计学习模型在预测 2 型糖尿病(T2DM)疾病方面取得了很大进展。本文采用荟萃分析方法综述了近年来 T2DM 软计算和统计学习模型的研究进展。我们在三个不同的搜索引擎上搜索了 2010 年至 2021 年间使用软计算和统计学习模型关注 T2DM 的论文。在确定的 1215 项研究中,有 34 项研究共纳入 136952 例患者符合纳入标准。汇总算法的性能能够预测 T2DM,总体准确率为 0.86(95%置信区间[0.82,0.89])。与肾病模型相比,具有筛查和诊断功能的模型对糖尿病预测的分类明显更高(汇总比例[95%CI]=0.91[0.74,0.97]),而具有肾病模型的汇总比例为 0.48[0.76,0.89]至 0.88[0.83,0.91])。对于 T2DM 的预测,决策树(DT)模型的汇总准确率为 0.88[95%CI:0.82,0.92],神经网络(NN)模型的汇总准确率为 0.85[95%CI:0.79,0.89]。元回归分析未发现不同糖尿病预测、样本量和影响因素的研究中汇总准确率存在统计学差异。此外,机器学习模型在 T2DM 的预测中具有很高的准确率。机器学习算法在 T2DM 中的预测准确性很有前景,主要通过 DT 和 NN 模型。然而,机器学习模型之间存在异质性。我们比较了结果和模型,得出的结论是,这些证据可能有助于临床医生解释数据并为其数据集选择最佳的 T2DM 预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/ca2e860dfeff/ijerph-19-14280-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/1d17bcb19bf8/ijerph-19-14280-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/082ee69418b2/ijerph-19-14280-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/0d900dcf2631/ijerph-19-14280-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/d050a5a0264a/ijerph-19-14280-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/afa59c33791b/ijerph-19-14280-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/ae991ba60983/ijerph-19-14280-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/0d5be9471365/ijerph-19-14280-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/d3203c88251e/ijerph-19-14280-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/0b8b744efa95/ijerph-19-14280-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/8c3e330796b4/ijerph-19-14280-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/0959866340b2/ijerph-19-14280-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/ca2e860dfeff/ijerph-19-14280-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/1d17bcb19bf8/ijerph-19-14280-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/082ee69418b2/ijerph-19-14280-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/0d900dcf2631/ijerph-19-14280-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/d050a5a0264a/ijerph-19-14280-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/afa59c33791b/ijerph-19-14280-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/ae991ba60983/ijerph-19-14280-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/0d5be9471365/ijerph-19-14280-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/d3203c88251e/ijerph-19-14280-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/0b8b744efa95/ijerph-19-14280-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/8c3e330796b4/ijerph-19-14280-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/0959866340b2/ijerph-19-14280-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b97/9655196/ca2e860dfeff/ijerph-19-14280-g012.jpg

相似文献

[1]
Accuracy of Machine Learning Classification Models for the Prediction of Type 2 Diabetes Mellitus: A Systematic Survey and Meta-Analysis Approach.

Int J Environ Res Public Health. 2022-11-1

[2]
Use and performance of machine learning models for type 2 diabetes prediction in community settings: A systematic review and meta-analysis.

Int J Med Inform. 2020-9-7

[3]
Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: A meta-analysis.

J Diabetes Investig. 2022-5

[4]
Machine Learning for the Prediction of New-Onset Diabetes Mellitus during 5-Year Follow-up in Non-Diabetic Patients with Cardiovascular Risks.

Yonsei Med J. 2019-2

[5]
A novel stacking ensemble for detecting three types of diabetes mellitus using a Saudi Arabian dataset: Pre-diabetes, T1DM, and T2DM.

Comput Biol Med. 2022-8

[6]
A machine learning-based diagnosis modelling of type 2 diabetes mellitus with environmental metal exposure.

Comput Methods Programs Biomed. 2023-6

[7]
Identifying diagnostic indicators for type 2 diabetes mellitus from physical examination using interpretable machine learning approach.

Front Endocrinol (Lausanne). 2024

[8]
Machine learning algorithms' accuracy in predicting kidney disease progression: a systematic review and meta-analysis.

BMC Med Inform Decis Mak. 2022-8-1

[9]
A machine learning-based framework to identify type 2 diabetes through electronic health records.

Int J Med Inform. 2017-1

[10]
Predictive Analysis of Diabetes-Risk with Class Imbalance.

Comput Intell Neurosci. 2022

引用本文的文献

[1]
Machine learning algorithms for predicting PTSD: a systematic review and meta-analysis.

BMC Med Inform Decis Mak. 2025-1-21

[2]
Comparing the accuracy of four machine learning models in predicting type 2 diabetes onset within the Chinese population: a retrospective study.

J Int Med Res. 2024-6

[3]
From normal population to prediabetes and diabetes: study of influencing factors and prediction models.

Front Endocrinol (Lausanne). 2023

[4]
Review: Machine learning in precision pharmacotherapy of type 2 diabetes-A promising future or a glimpse of hope?

Digit Health. 2023-9-29

[5]
Using Machine Learning for the Risk Factors Classification of Glycemic Control in Type 2 Diabetes Mellitus.

Healthcare (Basel). 2023-4-15

本文引用的文献

[1]
Meta-analysis of studies on depression prevalence among diabetes mellitus patients in Africa.

Heliyon. 2021-5-21

[2]
Time to reality check the promises of machine learning-powered precision medicine.

Lancet Digit Health. 2020-12

[3]
Predictive Supervised Machine Learning Models for Diabetes Mellitus.

SN Comput Sci. 2020

[4]
Machine learning prediction in cardiovascular diseases: a meta-analysis.

Sci Rep. 2020-9-29

[5]
A multi-class classification model for supporting the diagnosis of type II diabetes mellitus.

PeerJ. 2020-9-10

[6]
Use and performance of machine learning models for type 2 diabetes prediction in community settings: A systematic review and meta-analysis.

Int J Med Inform. 2020-9-7

[7]
Prediction of Nephropathy in Type 2 Diabetes: An Analysis of the ACCORD Trial Applying Machine Learning Techniques.

Clin Transl Sci. 2019-5-31

[8]
Comparison between linear and nonlinear machine-learning algorithms for the classification of thyroid nodules.

Eur J Radiol. 2019-2-27

[9]
Accurate and rapid screening model for potential diabetes mellitus.

BMC Med Inform Decis Mak. 2019-3-12

[10]
Predicting Diabetes Mellitus With Machine Learning Techniques.

Front Genet. 2018-11-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索