文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用机器学习进行2型糖尿病血糖控制风险因素分类

Using Machine Learning for the Risk Factors Classification of Glycemic Control in Type 2 Diabetes Mellitus.

作者信息

Cheng Yi-Ling, Wu Ying-Ru, Lin Kun-Der, Lin Chun-Hung Richard, Lin I-Mei

机构信息

Department of Psychology, College of Humanities and Social Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan.

The Lin's Clinic, Kaohsiung 807057, Taiwan.

出版信息

Healthcare (Basel). 2023 Apr 15;11(8):1141. doi: 10.3390/healthcare11081141.


DOI:10.3390/healthcare11081141
PMID:37107975
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10138388/
Abstract

Several risk factors are related to glycemic control in patients with type 2 diabetes mellitus (T2DM), including demographics, medical conditions, negative emotions, lipid profiles, and heart rate variability (HRV; to present cardiac autonomic activity). The interactions between these risk factors remain unclear. This study aimed to use machine learning methods of artificial intelligence to explore the relationships between various risk factors and glycemic control in T2DM patients. The study utilized a database from Lin et al. (2022) that included 647 T2DM patients. Regression tree analysis was conducted to identify the interactions among risk factors that contribute to glycated hemoglobin (HbA1c) values, and various machine learning methods were compared for their accuracy in classifying T2DM patients. The results of the regression tree analysis revealed that high depression scores may be a risk factor in one subgroup but not in others. When comparing different machine learning classification methods, the random forest algorithm emerged as the best-performing method with a small set of features. Specifically, the random forest algorithm achieved 84% accuracy, 95% area under the curve (AUC), 77% sensitivity, and 91% specificity. Using machine learning methods can provide significant value in accurately classifying patients with T2DM when considering depression as a risk factor.

摘要

2型糖尿病(T2DM)患者的血糖控制与多种风险因素相关,包括人口统计学因素、医疗状况、负面情绪、血脂谱以及心率变异性(HRV;反映心脏自主神经活动)。这些风险因素之间的相互作用尚不清楚。本研究旨在使用人工智能的机器学习方法来探索T2DM患者中各种风险因素与血糖控制之间的关系。该研究使用了Lin等人(2022年)的数据库,其中包括647名T2DM患者。进行回归树分析以确定导致糖化血红蛋白(HbA1c)值的风险因素之间的相互作用,并比较了各种机器学习方法对T2DM患者进行分类的准确性。回归树分析结果显示,高抑郁评分在一个亚组中可能是一个风险因素,但在其他亚组中则不是。在比较不同的机器学习分类方法时,随机森林算法在少量特征的情况下表现为最佳方法。具体而言,随机森林算法的准确率达到84%,曲线下面积(AUC)为95%,灵敏度为77%,特异性为91%。在将抑郁视为风险因素时,使用机器学习方法能够在准确分类T2DM患者方面提供重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab30/10138388/2051612b197c/healthcare-11-01141-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab30/10138388/2051612b197c/healthcare-11-01141-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab30/10138388/2051612b197c/healthcare-11-01141-g001.jpg

相似文献

[1]
Using Machine Learning for the Risk Factors Classification of Glycemic Control in Type 2 Diabetes Mellitus.

Healthcare (Basel). 2023-4-15

[2]
Heart Rate Variability measured during rest and after orthostatic challenge to detect autonomic dysfunction in Type 2 Diabetes Mellitus using the Classification and Regression Tree model.

Technol Health Care. 2022

[3]
Machine Learning to Identify Predictors of Glycemic Control in Type 2 Diabetes: An Analysis of Target HbA1c Reduction Using Empagliflozin/Linagliptin Data.

Pharmaceut Med. 2019-6

[4]
Predicting poor glycemic control during Ramadan among non-fasting patients with diabetes using artificial intelligence based machine learning models.

Diabetes Res Clin Pract. 2022-8

[5]
A machine learning-based framework to identify type 2 diabetes through electronic health records.

Int J Med Inform. 2017-1

[6]
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?

Clin Orthop Relat Res. 2020-7

[7]
Prediction of 3-year risk of diabetic kidney disease using machine learning based on electronic medical records.

J Transl Med. 2022-3-26

[8]
A machine learning-based diagnosis modelling of type 2 diabetes mellitus with environmental metal exposure.

Comput Methods Programs Biomed. 2023-6

[9]
Implementation of five machine learning methods to predict the 52-week blood glucose level in patients with type 2 diabetes.

Front Endocrinol (Lausanne). 2022

[10]
Enhancing Type 2 Diabetes Treatment Decisions With Interpretable Machine Learning Models for Predicting Hemoglobin A1c Changes: Machine Learning Model Development.

JMIR AI. 2024-7-18

引用本文的文献

[1]
Analysis and Mapping of Machine Learning in the Context of Diabetes.

Health Sci Rep. 2025-8-13

[2]
A hybrid approach to enhance HbA1c prediction accuracy while minimizing the number of associated predictors: A case-control study in Saudi Arabia.

PLoS One. 2025-6-17

[3]
Effect of Heart Rate Variability Biofeedback on Cardiac Autonomic Activation and Diabetes Self-Care in Patients with Type II Diabetes Mellitus.

Appl Psychophysiol Biofeedback. 2024-9-29

本文引用的文献

[1]
Accuracy of Machine Learning Classification Models for the Prediction of Type 2 Diabetes Mellitus: A Systematic Survey and Meta-Analysis Approach.

Int J Environ Res Public Health. 2022-11-1

[2]
Data-Driven Machine-Learning Methods for Diabetes Risk Prediction.

Sensors (Basel). 2022-7-15

[3]
An Ensemble Approach to Predict Early-Stage Diabetes Risk Using Machine Learning: An Empirical Study.

Sensors (Basel). 2022-7-13

[4]
Association of depression and parasympathetic activation with glycemic control in type 2 diabetes mellitus.

J Diabetes Complications. 2022-8

[5]
IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.

Diabetes Res Clin Pract. 2022-1

[6]
Roles of Anxiety and Depression in Predicting Cardiovascular Disease Among Patients With Type 2 Diabetes Mellitus: A Machine Learning Approach.

Front Psychol. 2021-4-28

[7]
Association of risk factors with type 2 diabetes: A systematic review.

Comput Struct Biotechnol J. 2021-3-10

[8]
Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence.

Sci Rep. 2021-1-21

[9]
Early detection of type 2 diabetes mellitus using machine learning-based prediction models.

Sci Rep. 2020-7-20

[10]
Applications of Machine Learning Predictive Models in the Chronic Disease Diagnosis.

J Pers Med. 2020-3-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索