Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China.
Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen 361102, China.
Int J Mol Sci. 2022 Oct 27;23(21):13022. doi: 10.3390/ijms232113022.
Heterozygous variants in the hepatocyte nuclear factor 1a (HNF1a) cause MODY3 (maturity-onset diabetes of the young, type 3). In this study, we found a case of novel HNF1a p.Gln125* (HNF1a-Q125ter) variant clinically. However, the molecular mechanism linking the new HNF1a variant to impaired islet β-cell function remains unclear. Firstly, a similar HNF1a-Q125ter variant in zebrafish () was generated by CRISPR/Cas9. We further crossed with several zebrafish reporter lines to investigate pancreatic β-cell function. Next, we introduced HNF1a-Q125ter and HNF1a shRNA plasmids into the Ins-1 cell line and elucidated the molecular mechanism. zebrafish significantly decreased the β-cell number, insulin expression, and secretion. Moreover, β cells in dilated ER lumen and increased the levels of ER stress markers. Similar ER-stress phenomena were observed in an HNF1a-Q125ter-transfected Ins-1 cell. Follow-up investigations demonstrated that HNF1a-Q125ter induced ER stress through activating the PERK/eIF2a/ATF4 signaling pathway. Our study found a novel loss-of-function HNF1a-Q125ter variant which induced β-cell dysfunction by activating ER stress via the PERK/eIF2a/ATF4 signaling pathway.
杂合变异的肝细胞核因子 1A (HNF1a) 导致 MODY3(年轻起病的成年型糖尿病,3 型)。在这项研究中,我们临床发现了一种新型的 HNF1a p.Gln125*(HNF1a-Q125ter)变异。然而,将新的 HNF1a 变异与受损的胰岛β细胞功能联系起来的分子机制仍不清楚。首先,我们通过 CRISPR/Cas9 生成了在斑马鱼中具有相似功能的 HNF1a-Q125ter 变异体。我们进一步与几种斑马鱼报告基因系杂交,以研究胰腺β细胞功能。接下来,我们将 HNF1a-Q125ter 和 HNF1a shRNA 质粒引入 Ins-1 细胞系,并阐明了分子机制。HNF1a-Q125ter 显著降低了β细胞数量、胰岛素表达和分泌。此外,β细胞中内质网(ER)腔扩张,内质网应激标志物水平增加。在 HNF1a-Q125ter 转染的 Ins-1 细胞中也观察到类似的 ER 应激现象。后续研究表明,HNF1a-Q125ter 通过激活 PERK/eIF2a/ATF4 信号通路诱导 ER 应激。我们的研究发现了一种新型的功能丧失型 HNF1a-Q125ter 变异,它通过激活 PERK/eIF2a/ATF4 信号通路诱导 ER 应激,从而导致β细胞功能障碍。