Pradakis Nikolaos, Maniotis Nikolaos, Samaras Theodoros
Department of Physics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
Center of Interdisciplinary Research and Innovation (CIRI), Aristotle University of Thessaloniki, Balkan Center, 570 01 Thermi, Greece.
Micromachines (Basel). 2022 Oct 24;13(11):1816. doi: 10.3390/mi13111816.
The blood−brain barrier is a highly selective semipermeable border that separates blood circulation from the brain and hinders the accumulation of substances in the central nervous system. Hence, a treatment plan aiming to combat neurodegenerative diseases may be restricted. The exploitation of the nose−brain pathway could be a promising bypass method. However, pharmaceutical uptake through the olfactory epithelium is insignificant in terms of treatment, if relying only on fluid dynamic interactions. The main reasons for this are the highly complicated geometry of the nose and the residence time of the substance. The issue can be tackled by using magnetic particles as drug carriers. With the application of an external magnetic field, further control of the particle motion can be achieved, leading to increased uptake. The present work studies this approach computationally by employing magnetite particles with a radius of 7.5 μm while a magnetic field is applied with a permanent neodymium-iron-boron magnet of 9.5×105 A/m magnetization. Through this investigation, the best drug delivery protocol achieved a 2% delivery efficiency. The most significant advantage of this protocol is its straightforward design, which does not require complex equipment, thus rendering the protocol portable and manageable for frequent dosing or at-home administration.
血脑屏障是一种高度选择性的半透性边界,它将血液循环与大脑分隔开,并阻碍物质在中枢神经系统中的积累。因此,旨在对抗神经退行性疾病的治疗方案可能会受到限制。利用鼻脑途径可能是一种有前景的旁路方法。然而,如果仅依靠流体动力学相互作用,通过嗅觉上皮的药物摄取在治疗方面是微不足道的。其主要原因是鼻子的几何结构高度复杂以及物质的停留时间。这个问题可以通过使用磁性颗粒作为药物载体来解决。通过施加外部磁场,可以进一步控制颗粒的运动,从而提高摄取量。本研究通过使用半径为7.5μm的磁铁矿颗粒进行计算研究,同时使用磁化强度为9.5×105 A/m的钕铁硼永磁体施加磁场。通过这项研究,最佳的药物递送方案实现了2%的递送效率。该方案最显著的优点是其设计简单,不需要复杂的设备,因此该方案便于携带且易于管理,可用于频繁给药或在家中给药。
Biomech Model Mechanobiol. 2016-8
J Aerosol Med Pulm Drug Deliv. 2020-10
Int J Nanomedicine. 2019-7-30
Comput Biol Med. 2019-2-26
Int J Numer Method Biomed Eng. 2018-5
ACS Appl Mater Interfaces. 2017-2-20
Nanoscale. 2017-1-19
Biomech Model Mechanobiol. 2016-8