文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于生物医学应用的外部磁场作用下鼻腔内磁性粒子运动的计算研究

Computational Study of Magnetic Particle Motion inside the Nasal Cavity under the Impact of an External Magnetic Field for Biomedical Applications.

作者信息

Pradakis Nikolaos, Maniotis Nikolaos, Samaras Theodoros

机构信息

Department of Physics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.

Center of Interdisciplinary Research and Innovation (CIRI), Aristotle University of Thessaloniki, Balkan Center, 570 01 Thermi, Greece.

出版信息

Micromachines (Basel). 2022 Oct 24;13(11):1816. doi: 10.3390/mi13111816.


DOI:10.3390/mi13111816
PMID:36363837
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9692509/
Abstract

The blood−brain barrier is a highly selective semipermeable border that separates blood circulation from the brain and hinders the accumulation of substances in the central nervous system. Hence, a treatment plan aiming to combat neurodegenerative diseases may be restricted. The exploitation of the nose−brain pathway could be a promising bypass method. However, pharmaceutical uptake through the olfactory epithelium is insignificant in terms of treatment, if relying only on fluid dynamic interactions. The main reasons for this are the highly complicated geometry of the nose and the residence time of the substance. The issue can be tackled by using magnetic particles as drug carriers. With the application of an external magnetic field, further control of the particle motion can be achieved, leading to increased uptake. The present work studies this approach computationally by employing magnetite particles with a radius of 7.5 μm while a magnetic field is applied with a permanent neodymium-iron-boron magnet of 9.5×105 A/m magnetization. Through this investigation, the best drug delivery protocol achieved a 2% delivery efficiency. The most significant advantage of this protocol is its straightforward design, which does not require complex equipment, thus rendering the protocol portable and manageable for frequent dosing or at-home administration.

摘要

血脑屏障是一种高度选择性的半透性边界,它将血液循环与大脑分隔开,并阻碍物质在中枢神经系统中的积累。因此,旨在对抗神经退行性疾病的治疗方案可能会受到限制。利用鼻脑途径可能是一种有前景的旁路方法。然而,如果仅依靠流体动力学相互作用,通过嗅觉上皮的药物摄取在治疗方面是微不足道的。其主要原因是鼻子的几何结构高度复杂以及物质的停留时间。这个问题可以通过使用磁性颗粒作为药物载体来解决。通过施加外部磁场,可以进一步控制颗粒的运动,从而提高摄取量。本研究通过使用半径为7.5μm的磁铁矿颗粒进行计算研究,同时使用磁化强度为9.5×105 A/m的钕铁硼永磁体施加磁场。通过这项研究,最佳的药物递送方案实现了2%的递送效率。该方案最显著的优点是其设计简单,不需要复杂的设备,因此该方案便于携带且易于管理,可用于频繁给药或在家中给药。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ac3/9692509/cb2aba1306b6/micromachines-13-01816-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ac3/9692509/5c0880294636/micromachines-13-01816-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ac3/9692509/ac92d4f6b49f/micromachines-13-01816-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ac3/9692509/cce08357b867/micromachines-13-01816-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ac3/9692509/d9d9e7617b31/micromachines-13-01816-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ac3/9692509/e976914537ed/micromachines-13-01816-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ac3/9692509/cb2aba1306b6/micromachines-13-01816-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ac3/9692509/5c0880294636/micromachines-13-01816-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ac3/9692509/ac92d4f6b49f/micromachines-13-01816-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ac3/9692509/cce08357b867/micromachines-13-01816-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ac3/9692509/d9d9e7617b31/micromachines-13-01816-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ac3/9692509/e976914537ed/micromachines-13-01816-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ac3/9692509/cb2aba1306b6/micromachines-13-01816-g006.jpg

相似文献

[1]
Computational Study of Magnetic Particle Motion inside the Nasal Cavity under the Impact of an External Magnetic Field for Biomedical Applications.

Micromachines (Basel). 2022-10-24

[2]
Improving intranasal delivery of neurological nanomedicine to the olfactory region using magnetophoretic guidance of microsphere carriers.

Int J Nanomedicine. 2015-2-10

[3]
Optimization of magnetophoretic-guided drug delivery to the olfactory region in a human nose model.

Biomech Model Mechanobiol. 2016-8

[4]
In Silico Study to Enhance Delivery Efficiency of Charged Nanoscale Nasal Spray Aerosols to the Olfactory Region Using External Magnetic Fields.

Bioengineering (Basel). 2022-1-16

[5]
Olfactory Targeting of Microparticles Through Inhalation and Bi-directional Airflow: Effect of Particle Size and Nasal Anatomy.

J Aerosol Med Pulm Drug Deliv. 2020-10

[6]
Design and Testing of Electric-Guided Delivery of Charged Particles to the Olfactory Region: Experimental and Numerical Studies.

Curr Drug Deliv. 2016

[7]
Numerical Comparison of Nasal Aerosol Administration Systems for Efficient Nose-to-Brain Drug Delivery.

Pharm Res. 2017-12-29

[8]
Comparison of micron- and nano-particle transport in the human nasal cavity with a focus on the olfactory region.

Comput Biol Med. 2021-1

[9]
Pulsatile Bi-Directional Aerosol Flow Affects Aerosol Delivery to the Intranasal Olfactory Region: A Patient-Specific Computational Study.

Front Pharmacol. 2021-11-23

[10]
Development of a Two-Way Coupled Eulerian-Lagrangian Computational Magnetic Nanoparticle Targeting Model for Pulsatile Flow in a Patient-Specific Diseased Left Carotid Bifurcation Artery.

Cardiovasc Eng Technol. 2019-6

本文引用的文献

[1]
Cell Tracking by Magnetic Particle Imaging: Methodology for Labeling THP-1 Monocytes with Magnetic Nanoparticles for Cellular Imaging.

Cells. 2022-9-16

[2]
Hyperconnected Openings Codified in a Max Tree Structure: An Application for Skull-Stripping in Brain MRI T1.

Sensors (Basel). 2022-2-11

[3]
Intranasal Delivery of Nanoformulations: A Potential Way of Treatment for Neurological Disorders.

Molecules. 2020-4-21

[4]
Recent expansions of novel strategies towards the drug targeting into the brain.

Int J Nanomedicine. 2019-7-30

[5]
An idealized geometry that mimics average nasal spray deposition in adults: A computational study.

Comput Biol Med. 2019-2-26

[6]
Regional deposition of nasal sprays in adults: A wide ranging computational study.

Int J Numer Method Biomed Eng. 2018-5

[7]
Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice.

Nat Commun. 2017-11-10

[8]
In Vitro and in Vivo Visualization and Trapping of Fluorescent Magnetic Microcapsules in a Bloodstream.

ACS Appl Mater Interfaces. 2017-2-20

[9]
Evidence of nose-to-brain delivery of nanoemulsions: cargoes but not vehicles.

Nanoscale. 2017-1-19

[10]
Optimization of magnetophoretic-guided drug delivery to the olfactory region in a human nose model.

Biomech Model Mechanobiol. 2016-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索