Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva 84105, Israel.
Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.
Molecules. 2022 Oct 31;27(21):7394. doi: 10.3390/molecules27217394.
Antifouling polymer coating surfaces are used in widespread industries applications. Zwitterionic polymers have been identified as promising materials in developing polymer coating surfaces. Importantly, the density of the polymer chains is crucial for acquiring superior antifouling performance. This study introduces two different zwitterionic polymer density surfaces by applying molecular modeling tools. To assess the antifouling performance, we mimic static adsorption test, by placing the foulant model bovine serum albumin (BSA) on the surfaces. Our findings show that not only the density of the polymer chain affect antifouling performance, but also the initial orientation of the BSA on the surface. Moreover, at a high-density surface, the foulant either detaches from the surface or anchor on the surface. At low-density surface, the foulant does not detach from the surface, but either penetrates or anchors on the surface. The anchoring and the penetrating mechanisms are elucidated by the electrostatic interactions between the foulant and the surface. While the positively charged ammonium groups of the polymer play major role in the interactions with the negatively charged amino acids of the BSA, in the penetrating mechanism the ammonium groups play minor role in the interactions with the contact with the foulant. The sulfonate groups of the polymer pull the foulant in the penetrating mechanism. Our work supports the design of a high-density polymer chain surface coating to prevent fouling phenomenon. Our study provides for the first-time insights into the molecular mechanism by probing the interactions between BSA and the zwitterion surface, while testing high- and low-densities polymer chains.
抗污聚合物涂层表面广泛应用于各行业。两性离子聚合物已被确定为开发聚合物涂层表面的有前途的材料。重要的是,聚合物链的密度对于获得优异的抗污性能至关重要。本研究通过应用分子建模工具介绍了两种不同的两性离子聚合物密度表面。为了评估抗污性能,我们通过将污染物模型牛血清白蛋白(BSA)放置在表面上来模拟静态吸附测试。我们的研究结果表明,不仅聚合物链的密度会影响抗污性能,而且 BSA 在表面上的初始取向也会影响。此外,在高密度表面上,污染物要么从表面上脱落,要么附着在表面上。在低密度表面上,污染物不会从表面上脱落,但会渗透或附着在表面上。污染物与表面之间的静电相互作用阐明了附着和渗透的机制。虽然聚合物中的带正电荷的铵基团在与 BSA 中的带负电荷的氨基酸相互作用中起主要作用,但在渗透机制中,铵基团在与污染物的接触中起次要作用。聚合物的硫酸盐基团在渗透机制中拉动污染物。我们的工作支持设计高密度聚合物链表面涂层以防止污垢现象。我们的研究首次深入了解了通过探测 BSA 和两性离子表面之间的相互作用,同时测试高密度和低密度聚合物链来探测 BSA 和两性离子表面之间相互作用的分子机制。