Suppr超能文献

自动驾驶汽车的变道决策算法的检测与风险分析。

Detection and Risk Analysis with Lane-Changing Decision Algorithms for Autonomous Vehicles.

机构信息

ESTACA Engineering School, 12 Rue Paul Delouvrier, 78180 Montigny-le-Bretonneux, France.

DRIVE, Université de Bourgogne, 49 rue Mademoiselle Bourgeois, BP 31, CEDEX, 58027 Nevers, France.

出版信息

Sensors (Basel). 2022 Oct 24;22(21):8148. doi: 10.3390/s22218148.

Abstract

Despite the great technological advances in ADAS, autonomous driving still faces many challenges. Among them is improving decision-making algorithms so that vehicles can make the right decision inspired by human driving. Not only must these decisions ensure the safety of the car occupants and the other road users, but they have to be understandable by them. This article focuses on decision-making algorithms for autonomous vehicles, specifically for lane changing on highways and sub-urban roads. The challenge to overcome is to develop a decision-making algorithm that combines fidelity to human behavior and that is based on machine learning, with a global structure that allows understanding the behavior of the algorithm and that is not opaque such as black box algorithms. To this end, a three-step decision-making method was developed: trajectory prediction of the surrounding vehicles, risk and gain computation associated with the maneuver and based on the predicted trajectories, and finally decision making. For the decision making, three algorithms: decision tree, random forest, and artificial neural network are proposed and compared based on a naturalistic driving database and a driving simulator.

摘要

尽管 ADAS 在技术上取得了巨大进步,但自动驾驶仍然面临许多挑战。其中之一是改进决策算法,以便车辆能够在受到人类驾驶启发的情况下做出正确的决策。这些决策不仅必须确保车内乘客和其他道路使用者的安全,而且必须让他们能够理解。本文重点介绍自动驾驶车辆的决策算法,特别是高速公路和郊区道路的变道。需要克服的挑战是开发一种决策算法,该算法将对人类行为的保真度与基于机器学习的方法相结合,具有允许理解算法行为且不透明的全局结构,如黑盒算法。为此,开发了一个三步骤决策方法:周围车辆的轨迹预测、与机动相关的风险和收益计算以及基于预测轨迹的决策。对于决策,提出了三种算法:决策树、随机森林和人工神经网络,并基于自然驾驶数据库和驾驶模拟器进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a63d/9658220/513f1879dec6/sensors-22-08148-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验