Suppr超能文献

一种用于移动机器人路径规划与避障的广义激光模拟器算法

A Generalized Laser Simulator Algorithm for Mobile Robot Path Planning with Obstacle Avoidance.

作者信息

Muhammad Aisha, Ali Mohammed A H, Turaev Sherzod, Abdulghafor Rawad, Shanono Ibrahim Haruna, Alzaid Zaid, Alruban Abdulrahman, Alabdan Rana, Dutta Ashit Kumar, Almotairi Sultan

机构信息

Department of Mechatronics Engineering, Faculty of Technology, Bayero University, Kano 700241, Nigeria.

Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.

出版信息

Sensors (Basel). 2022 Oct 25;22(21):8177. doi: 10.3390/s22218177.

Abstract

This paper aims to develop a new mobile robot path planning algorithm, called generalized laser simulator (GLS), for navigating autonomously mobile robots in the presence of static and dynamic obstacles. This algorithm enables a mobile robot to identify a feasible path while finding the target and avoiding obstacles while moving in complex regions. An optimal path between the start and target point is found by forming a wave of points in all directions towards the target position considering target minimum and border maximum distance principles. The algorithm will select the minimum path from the candidate points to target while avoiding obstacles. The obstacle borders are regarded as the environment's borders for static obstacle avoidance. However, once dynamic obstacles appear in front of the GLS waves, the system detects them as new dynamic obstacle borders. Several experiments were carried out to validate the effectiveness and practicality of the GLS algorithm, including path-planning experiments in the presence of obstacles in a complex dynamic environment. The findings indicate that the robot could successfully find the correct path while avoiding obstacles. The proposed method is compared to other popular methods in terms of speed and path length in both real and simulated environments. According to the results, the GLS algorithm outperformed the original laser simulator (LS) method in path and success rate. With application of the all-direction border scan, it outperforms the A-star (A*) and PRM algorithms and provides safer and shorter paths. Furthermore, the path planning approach was validated for local planning in simulation and real-world tests, in which the proposed method produced the best path compared to the original LS algorithm.

摘要

本文旨在开发一种名为广义激光模拟器(GLS)的新型移动机器人路径规划算法,用于在存在静态和动态障碍物的情况下自主导航移动机器人。该算法使移动机器人能够在复杂区域中寻找目标时识别可行路径,并在移动时避开障碍物。通过考虑目标最小距离和边界最大距离原则,朝着目标位置在所有方向上形成一波点,从而找到起点和目标点之间的最优路径。该算法将从候选点中选择到目标的最短路径,同时避开障碍物。对于静态避障,将障碍物边界视为环境边界。然而,一旦动态障碍物出现在GLS波前,系统将其检测为新的动态障碍物边界。进行了多项实验以验证GLS算法的有效性和实用性,包括在复杂动态环境中存在障碍物时的路径规划实验。结果表明,机器人能够成功找到正确路径并避开障碍物。在实际和模拟环境中,将该方法与其他流行方法在速度和路径长度方面进行了比较。结果显示,GLS算法在路径和成功率方面优于原始激光模拟器(LS)方法。通过应用全方位边界扫描,它优于A*算法和概率地图(PRM)算法,并提供更安全、更短的路径。此外,该路径规划方法在模拟和实际测试中的局部规划中得到了验证,与原始LS算法相比,该方法生成了最佳路径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b77/9657503/0ad4b094f889/sensors-22-08177-g009.jpg

相似文献

1
A Generalized Laser Simulator Algorithm for Mobile Robot Path Planning with Obstacle Avoidance.
Sensors (Basel). 2022 Oct 25;22(21):8177. doi: 10.3390/s22218177.
2
Robot obstacle avoidance optimization by A* and DWA fusion algorithm.
PLoS One. 2024 Apr 29;19(4):e0302026. doi: 10.1371/journal.pone.0302026. eCollection 2024.
3
Real-time navigation of mecanum wheel-based mobile robot in a dynamic environment.
Heliyon. 2024 Mar 6;10(5):e26829. doi: 10.1016/j.heliyon.2024.e26829. eCollection 2024 Mar 15.
4
Local Path Planning for Mobile Robots Based on Fuzzy Dynamic Window Algorithm.
Sensors (Basel). 2023 Oct 5;23(19):8260. doi: 10.3390/s23198260.
5
Real-Time Path Planning for Robot Using OP-PRM in Complex Dynamic Environment.
Front Neurorobot. 2022 Jun 9;16:910859. doi: 10.3389/fnbot.2022.910859. eCollection 2022.
6
Path planning for mobile robots in complex environments based on improved ant colony algorithm.
Math Biosci Eng. 2023 Jul 27;20(9):15568-15602. doi: 10.3934/mbe.2023695.
7
A path planning approach for mobile robots using short and safe Q-learning.
PLoS One. 2022 Sep 26;17(9):e0275100. doi: 10.1371/journal.pone.0275100. eCollection 2022.
8
PRM-D* Method for Mobile Robot Path Planning.
Sensors (Basel). 2023 Mar 27;23(7):3512. doi: 10.3390/s23073512.
9
An autonomous mobile robot path planning strategy using an enhanced slime mold algorithm.
Front Neurorobot. 2023 Oct 17;17:1270860. doi: 10.3389/fnbot.2023.1270860. eCollection 2023.

本文引用的文献

1
The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning.
Front Neurorobot. 2020 Oct 2;14:63. doi: 10.3389/fnbot.2020.00063. eCollection 2020.
3
ITC: Infused Tangential Curves for Smooth 2D and 3D Navigation of Mobile Robots .
Sensors (Basel). 2019 Oct 10;19(20):4384. doi: 10.3390/s19204384.
4
Path Smoothing Techniques in Robot Navigation: State-of-the-Art, Current and Future Challenges.
Sensors (Basel). 2018 Sep 19;18(9):3170. doi: 10.3390/s18093170.
6
Symbiotic Navigation in Multi-Robot Systems with Remote Obstacle Knowledge Sharing.
Sensors (Basel). 2017 Jul 5;17(7):1581. doi: 10.3390/s17071581.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验